

Practical Software and Systems Measurement
Continuous Iterative Development

Measurement Framework

Version 1.05
June 15, 2020

Developed and Published by Members of:

Practical Software &
Systems Measurement

National Defense Industrial
Association

International Council on
Systems Engineering

Product No.

PSM-2020-06-001
 Product No.

INCOSE-TP-2020-001-06

Editors:

Cheryl L. Jones
US Army

cheryl.l.jones128.civ@mail.mil

 Geoff Draper
L3Harris Technologies
geoff.draper@l3harris.com

Bill Golaz

Lockheed Martin
willliam.h.golaz@lmco.com

 Paul Janusz
US Army

paul.e.janusz.civ@mail.mil

Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

mailto:cheryl.l.jones128.civ@mail.mil
mailto:geoff.draper@l3harris.com
mailto:willliam.h.golaz@lmco.com
mailto:paul.e.janusz.civ@mail.mil

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 i

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

PSM Product Number: PSM-2020-06-001
INCOSE Product Number: INCOSE-TP-2020-001-06

Copyright Notice:
For this document, each of the collaborative organizations listed on the cover page is the sole
manager of their products and services and are the only parties authorized to modify them. Since
this is a collaborative product, modifications are managed through the participation of all parties.

General Use: Permission to reproduce, use this document or parts thereof, and to prepare
derivative works from this document is granted, with attribution to PSM, NDIA, and INCOSE,
and the original author(s), provided this copyright notice is included with all reproductions and
derivative works.

Supplemental Materials: Additional materials may be added for tailoring or supplemental
purposes if the material developed separately is clearly indicated. A courtesy copy of additional
materials shall be forwarded to PSM (psm@psmsc.com, attention: Cheryl Jones). The
supplemental materials will remain the property of the author(s) and will not be distributed, but
will be coordinated with the other collaboration parties.

Author Use: Authors have full rights to use their contributions with credit to the technical source.

Supplemental Notice from INCOSE: This work is an Affiliate Product per INCOSE Policy TEC-
107 INCOSE Technical Product Development & Commercialization (26 October 2018). It is a
technical product developed outside the INCOSE product development process and was made by
INCOSE members in cooperation with PSM and NDIA; then approved by INCOSE to be
distributed from INCOSE central channels. The authors own the copyright and take primary
responsibility for proper branding, intellectual property, content quality and appropriate citations
with INCOSE oversight based on this policy & related procedure.

mailto:psm@psmsc.com

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 ii

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CONTENTS

EXECUTIVE SUMMARY ... 1

1. FRONT MATERIAL .. 2

1.1 BACKGROUND ... 2
1.2 CONTRIBUTORS .. 3

2. MAJOR CONCEPTS ... 5

2.1 CID WORK DECOMPOSITION .. 5
2.2 MEASUREMENT CONTEXT DIAGRAM .. 6
2.3 DEFECT TERMINOLOGY .. 7
2.4 CID PROCESS .. 8

3. ONTOLOGY AND DEFINITIONS ... 9

4. MAPPING DATA TO MEASUREMENT SPECIFICATIONS ... 12

5. MEASUREMENT PRINCIPLES ... 15

6. NEXT STEPS .. 16

7. ICM TABLE ... 17

8. MEASUREMENT SPECIFICATIONS .. 24

8.1 AUTOMATED TEST COVERAGE (PRODUCT OR ENTERPRISE MEASURE) ... 24
8.2 BURNDOWN (TEAM, PRODUCT, OR ENTERPRISE MEASURE) ... 31
8.3 COMMITTED VS COMPLETED (TEAM, PRODUCT, OR ENTERPRISE MEASURE) .. 34
8.4 CUMULATIVE FLOW (TEAM, PRODUCT, OR ENTERPRISE MEASURE) .. 38
8.5 CYCLE TIME/ LEAD TIME (TEAM OR PRODUCT MEASURE) .. 43
8.6 DEFECT DETECTION (TEAM, PRODUCT, OR ENTERPRISE MEASURE) .. 47
8.7 DEFECT RESOLUTION (TEAM OR PRODUCT MEASURE) ... 51
8.8 MEAN TIME TO RESTORE (MTTR)/ MEAN TIME TO DETECT (MTTD) ... 55
8.9 RELEASE (OR DEPLOYMENT) FREQUENCY (PRODUCT OF ENTERPRISE MEASURE) ... 59
8.10 TEAM VELOCITY (TEAM MEASURE) ... 65

BIBLIOGRAPHY .. 68

LIST OF FIGURES

Figure 1: CID Work Decomposition... 5
Figure 2: Measurement Context Diagram... 6
Figure 3: Defect Terminology .. 7
Figure 4: Continuous Iterative Development Process .. 8
Figure 5: Information Model - High-Level View ... 12
Figure 6: Measurement Information Model .. 13
Figure 7: Mapping Data to Measures.. 14
Figure 8: Speed - Quality Sweet Spot ... 15
Figure 9: Automated Test Coverage (Project Level) .. 25
Figure 10: Automated Test Pass/Fail Status ... 26

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 iii

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 11: Code Coverage from Automated Testing .. 27
Figure 12: Automated Test Coverage (Enterprise Level) ... 28
Figure 13: Release Burndown ... 32
Figure 14: Stories Completed versus Committed ... 35
Figure 15: Program Completed versus Committed .. 36
Figure 16: Cumulative Flow Diagram .. 39
Figure 17: Notional CFD Diagram ... 40
Figure 18: Workflow by Period and Rolling Average .. 40
Figure 19: JIRA Control Chart focusing on an area of interest .. 44
Figure 20: Defect Terminology .. 48
Figure 21: Defects Detected versus Resolved .. 51
Figure 22: Cumulative Defects Detected vs. Cumulative Defects Resolved 52
Figure 23: Defect Resolution Lag Time ... 52
Figure 24: Operations Outage Summary .. 56
Figure 25: Iterative Development ... 59
Figure 26: Product Iterative Releases (Conceptual) ... 60
Figure 27: Release Duration for Product Tango ... 62
Figure 28: Product Release Frequency ... 62
Figure 29: Team Velocity ... 66

LIST OF TABLES

Table 1: PSM CID Measurement Framework Editors .. 3
Table 2: Core Team Contributors and their Organization .. 3
Table 3: Additional Contributors to the Report .. 4
Table 4: PSM CID Measurement Framework and Specifications Terms 9
Table 5: Issues, Categories, and Measures ... 17
Table 6 Defect Detection by Release .. 48
Table 7: Defect Resolution Lag Time ... 49
Table 8: Defect Resolution Lag Time ... 53
Table 9: MTTR Statistics .. 56
Table 10: Product Release Averages .. 61
Table 11: Release Frequency and Labor Hours .. 61
Table 12: Sample Acceleration ... 66

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 1

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

EXECUTIVE SUMMARY
This report provides recommendations for the measurement of continuous iterative developments
(CID). It includes a series of diagrams and an ontology to describe the development approaches
and terminology used. The report includes a Practical Software and Systems Measurement
(PSM) CID measurement framework detailing common information needs and measures that are
effective for evaluating CID approaches. This is documented in the “Information Category-
Measurable Concept-Measures” (ICM) Table. The information needs address the team, product,
and enterprise perspectives to provide insight and drive decision-making. This is documented in
the ICM table described in Section 7. The framework also identifies an initial set of measures
that have been identified as being practical measures to address these information needs. For the
highest priority measures, sample measurement specifications have been developed that detail
the identified measures. These are included in Section 8. Additional potential measures will be
added in future releases, as described in Section 6.
A successful measurement program depends on establishing a clear context and operational
definitions for the measures to be collected. Definitions can sometimes vary depending on the
references and how measures are applied. The diagrams and definitions that follow provide the
terminology used in this PSM CID measurement framework, in order to establish a common
understanding, so that measures can be implemented and used consistently with community
consensus.
This report is intended to be methodology and approach-agnostic and is written so that it may be
adapted to organizational needs. Different methodologies and tools may use different
terminology than defined in this report. The ontology in Section 3 provides synonyms for
commonly used terms.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 2

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1. FRONT MATERIAL
The following sections provide overview information.

1.1 BACKGROUND
A collaborative working group was established between Practical Software and Systems
Measurement (PSM), the National Defense Industrial Association (NDIA) Systems Engineering
Division, and the International Council on Systems Engineering (INCOSE) to develop a PSM
measurement framework for Continuous Iterative Development (CID) in response to
recommendations of the Defense Science Board (DSB) and Defense Innovation Board (DIB)
studies.
Additionally, the U.S. Department of Defense (DoD) is making a transformational change in
acquisition policy by redesigning the Defense Acquisition System, including the addition of a
new Software Acquisition Pathway (Software Acquisition Pathway Interim Policy and
Procedures, 2020). The general guidelines for this new acquisition policy are established in
Section 800 of the 2020 National Defense Authorization Act. The pathway promotes Agile and
DevSecOps and allow for upgradeable and timely fielding of software in a way that aligns with
this CID approach. The measurement recommendations in this report provide a methodology to
measure the Execution Phase of the Software Acquisition Pathway. These CID measures also
apply to other non-DoD domains.
The most critical information needs and measures have been prioritized, based on a series of
surveys with members of relevant NDIA, PSM, and INCOSE working groups. Additional
measures will be specified, and revisions to the information needs will be included, as additional
input is provided. This framework will be improved over time. We welcome your
recommendations and comments.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 3

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.2 CONTRIBUTORS
Table 1: PSM CID Measurement Framework Editors

Editors Organization
Cheryl Jones Army Futures Command – CCDC Armament Center
Geoff Draper L3Harris Technologies / NDIA Systems Engineering Division
Bill Golaz Lockheed Martin Corporation
Paul Janusz Army Futures Command – CCDC Armament Center

Table 2: Core Team Contributors and their Organization

Core Team Organization
Steve Cox Telecote Research
Firas Glaiel Raytheon Company
Stephen Henry Defense Acquisition University
Suzette Johnson Northrop Grumman Corporation
Jonathan Kiser The Boeing Company
Jason McDonald L3Harris Technologies
Greg Niemann Lockheed Martin
Carmela Rice Office of the Undersecretary of Defense, Acquisition and

Sustainment (OUSD A&S)
Garry Roedler Lockheed Martin Corporation / INCOSE
David Rosenfeld L3Harris Technologies
Larri Rosser Raytheon Company
Robert Simmons Raytheon Company
Robin Yeman Lockheed Martin Corporation

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 4

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional thanks go to the many additional colleagues who contributed to the development of
the guide thorough participation in meetings, workshops and reviews.

Table 3: Additional Contributors to the Report

Additional Contributors Organization
Elizabeth Ashwood Quantech Services
Dr. Barry Boehm University of Southern California / Systems Engineering

Research Center (SERC)
Dr. Jeff Boleng Office of the Undersecretary of Defense, Acquisition and

Sustainment (OUSD A&S)
Katherine Bradshaw US Air Force AFCAA
Cherrie Brown US Navy
Connie Bustillo Lockheed Martin Corporation
Kevin Chapman L3Harris Technologies
Dr. Robert Charette ITABHI Corporation
David Chesebrough NDIA
Dr. Bradford Clark Software Metrics Inc.
Christopher Costello Army Futures Command – CCDC Armament Center
Victoria Cuff Office of the Undersecretary of Defense, Acquisition and

Sustainment (OUSD A&S)
Kyle Davis Quantech Services
James Doswell US Army DASA-CE
Rick Dove Paradigm Shift / INCOSE Agile Systems and Systems

Engineering Working Group
Kim Elliott Raytheon Company
Joseph Elm NDIA Systems Engineering Division
Esma Elmazaj L3Harris Technologies
Trevor Enos US Air Force
Will Hayes Software Engineering Institute, Carnegie Mellon University
Diane Juhas Raytheon Company
Matt Kennedy US Department of Treasury
Jessica Li Lockheed Martin Corporation
Lindsay Migala US Air Force
William J. Nichols Software Engineering Institute, Carnegie Mellon University
Victoria Perez US Air Force
Bernard Reger Army Futures Command – CCDC Armament Center
Gene Rosenbluth Northrop Grumman Corporation
Ranjit Singh Lockheed Martin Corporation
Roz Singh Raytheon Company
Dan Strickland Missile Defense Agency (MDA)
Steven Verga L3Harris Technologies
Marilyn Vickers US Air Force

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 5

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2. MAJOR CONCEPTS
This PSM CID measurement framework provides guidance on information needs and measures
from three perspectives: team, product, and enterprise. In many cases, the same base measures
may be used, although aggregated to higher levels for product or enterprise needs. In other
cases, different base measures may be used. The measurement specifications provide initial
guidance on tailoring measures and indicators for these different perspectives and aggregation
levels.
For CID, stakeholders include actual users of the system and software, as well as the
development team, customer, and enterprise managers. The measures need to provide value to all
stakeholders and inform diverse information needs.
One of the major issues with measures is ensuring that they provide information needed to
support decision making and that they are used. A small set of measures should be tailored for
each program and organization, focused on those needed for fact-based decision making. The
measures should be regularly reviewed to ensure they are being used. If not, other measures may
be required, or additional training may be required for decision makers on how the measures can
be utilized.
2.1 CID WORK DECOMPOSITION
Figure 1 contains a sample work decomposition approach for CID. This terminology will be
used throughout this report and the associated ICM Table and measurement specifications.
Mission Requirements or Capabilities are the top level of user requirements. They are often
documented in a roadmap. The roadmap is a top-level view of capabilities, which evolves over
time as the CID process is performed. For DOD systems, the mission requirements may begin in
the Joint Capabilities Integration and Development System (JCIDS), Capability Needs Statement
(CNS), or an equivalent document. Capabilities are then decomposed into features which are
then decomposed into stories, which may be decomposed into tasks.

Figure 1: CID Work Decomposition

Tasks

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 6

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.2 MEASUREMENT CONTEXT DIAGRAM
Figure 2 illustrates the context for common measures of continuous iterative development as
they are defined and applied in the PSM CID measurement framework and measurement
specifications. The diagram should be interpreted as a model supporting multiple iterations
throughout development and operations. Although intended to be broadly applicable across a
range of domains, adopters of the framework should further interpret, tailor, and apply these
measures as applicable to their own business context.
Measurement may occur in each of many potential stakeholder environments. Not all
organizations will have all of these environments, as distinct entities. Different levels of
sophistication of these environments may be used by different teams, for different levels of
evaluation. Possible environments include:

• Development/Integration Environment(s)
• Production Representative Environment
• Operationally Relevant Environment
• Operational Environment

The enterprise generally focuses on actual measures from the operational environment. The team
or product measures may begin in earlier environments, and focus on ensuring objectives will be
met as the system is developed and sustained. Similar activities may be performed in different
environments, with separate measures of effectiveness.

Figure 2: Measurement Context Diagram

Adapted from: https://limblecmms.com/blog/mttr-mtbf-mttf-guide-to-failure-metrics/

Major elements of this diagram for interpreting the context for candidate measures in the PSM
CID measurement framework, emphasized by the bolded text labels, are described below.
Additional details on individual measures are provided in the measurement specifications.

• Backlog: A collection of proposed work items to be implemented (see Section 3 for full
description). Work items may include user needs (new or unfilled items) or defects from
prior releases. Work proceeds for only those requests that are prioritized and accepted for
implementation (committed work).

https://limblecmms.com/blog/mttr-mtbf-mttf-guide-to-failure-metrics/

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 7

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Factory: Development proceeds through the Factory processes (requirements, design,
implementation, test) for committed work and culminates with deployment. Work is
planned and implemented iteratively (a recurring series of iterations and releases).

• Operations: Completed work from the Factory is Deployed in a new release to internal
or external Operations, which may include a developer integration/test environment, end
use Operations, or other intermediate operationally representative environments (e.g.,
operational test bed). The measures shown may be relevant to any or all of these
environments. See Figure 3 for additional details on internal and external operations.

• Rework: The release(s) deployed may need to be updated to account for defects, security
vulnerabilities, or other anomalies that affect the delivery of deployed services. Defects
(e.g., trouble tickets) are issued for these requested changes. Operations may be able to
continue in a degraded mode (e.g., workarounds, redundant paths) until full service is
restored. Restoration time (Time to Restore) includes the time to detect and diagnose the
error (MTTD), and to implement and deploy repairs (MTTR). Some repairs may be
possible directly in Operations (e.g., network issues, configuration changes, restarting
COTS software); others may need to be routed to the Backlog for prioritization. The
colors (Red, Yellow, Green) in this figure indicate the transition from observation of the
issue, to initiation of repairs, and to restoration of normal operations.

2.3 DEFECT TERMINOLOGY
Defect terminology may also change from one methodology or company to another. Defect
terminology used in this PSM CID measurement framework is defined in the ontology in Section
3, consistent with Figure 3. Operationally representative environments can be either internal or
external.

Figure 3: Defect Terminology

~
Iterations
(defects originated)

Internal
Development Team

SW I&T
SE I&T

DT
Formal Test

Etc.

Internal
(Operations)

Release

External Releases
e.g., to End Users~

Containment
team errors, defects

Released - Delivered
defects, escapes

Released - Deployed (Fielded)
defects, escapes

External (Operations)
Customer

Candidate
Release

SW I&T
SE I&T

DT
Formal Test

Etc.

Internal Releases
e.g.,

Integration and Test
Formal Test

Operational
Release

Operational EnvironmentOperationally Relevant Environment

Factory

Development/Integration and Production Representative Environments

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 8

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.4 CID PROCESS
Figure 4 provides a conceptual depiction of the base measures that are collected for iterative
releases and deployments to operations. There may be many iterations that are produced for
internal use and continued development (for example v0.n, v1.n, v2.n in Figure 4). A subset of
these are candidate releases that are available for external use (for example Release 1.0 in the
figure), with a subset of these actually released for operational use (for example Release 2.0 in
Figure 4). Some of these releases are assigned conceptual terms (MVP, NVP, MVCR)
indicating the maturity of the product capability for early operational use; refer to Section 3 for
descriptions.

Figure 4: Continuous Iterative Development Process

Release

Candidate Release
Operational release

Time (days)

t0 Release 1.0 Release 2.0 Release 3.0

v0.1 … v0.n v1.1 v1.2 … v1.n v2.1 v2.2 … v2.n

∆t = t2 ∆t = t3∆t = t1

MVP Threshold

NVP1 Threshold (MVCR)

NVPn Threshold

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 9

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3. ONTOLOGY AND DEFINITIONS
The terms in Table 4 are used in the PSM CID measurement framework and specifications.
Related terms are illustrated in figures 1, 2, and 3, and are grouped together in this section. The
terms and definitions used here are drawn from several sources, including common industry best
practices (defense and commercial), inputs from subject matter experts, DoD Software
Acquisition Pathway policy and guidance, and DSB/DIB software acquisition reports. (See
Bibliography for references.)

Table 4: PSM CID Measurement Framework and Specifications Terms
Term Synonyms Description

Continuous Iterative
Development (CID)

Agile, DevOps,
DevSecOps, SAFe

A method of managing development, testing, and release of
software, or systems, to continually, or iteratively, provide
working functional systems of increasing capability to internal
and external customers.

Roadmap A high-level visual summary that maps out the vision and
direction of product offerings over time. It describes the goals
and capabilities of external releases.

Capability Epic, Mission
Requirements

Higher-level solutions typically spanning multiple releases. For
DoD, these may be reflected by a Capability Needs Statement
(CNS) or JCIDS capabilities. Capabilities are made up of
multiple Features to facilitate implementation.

Feature A service or distinguishing characteristic of a software item (e.g.,
performance, portability, or functionality) that fulfills a
stakeholder need and includes benefit and acceptance criteria
within one release. Features are used to complete capabilities
and are comprised of multiple Stories (or tasks, use cases, etc.).

Story Use cases User Story. A small desired behavior of the system based on a
user scenario that can be implemented and demonstrated in one
iteration. A story is comprised of one or more tasks. In software
development and product management, a user story is an
informal, natural language description of one or more features of
a software system. User stories are written from the perspective
of an end user or user of a system.

Use Case. In software and systems engineering, a use case is a
list of actions or event steps, typically defining the interactions
between a user and a system (or between software elements), to
achieve a goal. Use cases can be used in addition to or in lieu of
user stories.

Story Points A subjective value assigned by the developing team to a story to
provide a relative measure of effort and complexity. Story points
are a unit-less value: they are a scalar indicator of relevant
complexity. Story points are generally not comparable across
teams.

Task Steps to be completed to satisfy a Story.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 10

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Term Synonyms Description

Cycle Time The elapsed time from when work is put into progress until the
time work has been completed.

Lead Time The elapsed time from when work is identified, and a request is
provided to the time the request has been satisfied. Note: The
time the request has been satisfied is usually the same time the
associated work is completed.

Backlog Program Backlog
Release Backlog

Product backlogs identify detailed user needs in prioritized lists.
The backlogs allow for dynamic reallocation of scope and
priority of current and planned software releases. The backlog
contains new capabilities/features, changes to existing
capabilities/features, defect fixes, infrastructure changes or other
activities that a team may deliver in order to achieve a specific
outcome. Issues, errors, and defects identified during
development and operations should also be captured in the
product backlog to address in future iterations and releases. The
development team works with the user community to decompose
and prioritize the roadmap capabilities into product backlog
entries.

An iteration backlog is a list of the new stories, changes to
existing stories, bug fixes, infrastructure changes or other
activities that a team may deliver in order to achieve a specific
outcome, within a near term iteration cadence. The iteration
backlog contains a decomposition of product backlog entries into
lower level items, for those prioritized for near-term
implementation.

Problem Report Defect Report,
Discrepancy
Report, Trouble
Ticket

Identified issue with the product. Once approved for
implementation, a Change Request, or Story, may be created, or
the Problem Report may be used to track implementation.
Service incidents in Operations are typically recorded in trouble
tickets or equivalent.

Defect Errors, Issues A defect is a condition in a (software, system, hardware) product
which does not meet its requirements or end-user expectation,
causes it to malfunction or to produce incorrect/unexpected
results, or causes it to behave in unintended ways. Defects may
be documented in problem reports (or trouble tickets), or they
may be added to the backlog for consideration in future
iterations.

• Escaped Defects are defects detected, or resolved, after
release of the product and version containing the defect.
Defects are generally tracked separately for internal and
external releases

• Contained Defects, also known as Saves, are defects detected
and resolved before internal or external release of the product
and version containing the defect.

Change Revision that adds, removes, or modifies any aspect of the
product. Note: Identified changes may be documented using
Stories or Features.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 11

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Term Synonyms Description

Change Request CR Requested change to the product. Some organizations may use
Problem Reports instead of separate Change Requests to track
issues.

Release Build, Increment A grouping of Capabilities and/or Features that can be used for
demonstration, evaluation, or delivery. A release may be internal
for integration, testing, or demonstration; or external, to system
test or as user delivery. A release may be based on a time block
or on product maturity.

Internal release A release that is ready for internal use outside of the development
team. It may be used for integration, testing, or demonstration.

Candidate Release External Release A release that has been through the pipeline and system test, and
is ready for transition to the user.

Operational Release Deployment
Release

A release that has been approved for operational use.

Iteration Sprint A small internal time block in which the development team
develops and demonstrates a set of Stories. An iteration is a full
development cycle that can result in a Release. In some
methodologies, an iteration is called a Sprint.

MVP / MVCR / NVP Minimum Viable Product (MVP): An early version of the
software to deliver or field basic capabilities to users for
evaluation and feedback. Insights from MVPs help shape scope,
requirements, and design of future product releases.

Minimum Viable Capability Release (MVCR): A set of
features suitable to be fielded to an operational environment that
provides value and capability to the end user/warfighter in a rapid
timeline. The MVCR delivers initial warfighting capabilities to
enhance some mission outcome(s). The MVCR, used in DOD
software policy, is analogous to a Minimum Marketable Product
(MMP) in commercial industry.

Next Viable Product (NVP): The next set of features in the
succeeding product delivery.

Release Style There are three types of release styles: Cadenced (e.g.,
Quarterly), Feature-based (e.g., Minimum Viable Product), and
Continuous Deployment. Continuous Deployment takes
significant discipline, and therefore requires more maturity.
Most programs will do some form of cadenced release/iteration
schedule, with specific time blocks.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 12

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4. MAPPING DATA TO MEASUREMENT SPECIFICATIONS
In the PSM methodology, the information model links the data that can be measured to a
specified information need, as illustrated in Figure 5. More detail on the discussions in this
section can be found in Practical Software and Systems Measurement (John McGarry (Author),
2001).

Figure 5: Information Model - High-Level View

The things that can actually be measured include specific attributes of the systems and software
processes and products, such as size, effort, and number of defects. The measurement construct
describes how the relevant attributes are quantified and converted to indicators that provide a
basis for decision making. A single measurement construct may involve three types, or levels, of
measures; base measures, derived measures, and indicators. The measurement planner needs to
specify the details of the measurement constructs to be used in the measurement plan, as well as
the procedures for data collection, analysis, and reporting.
At each of the three levels of measures - base measures, derived measures, and indicators -
additional information content is added in the form of rules, models, and decision criteria. Figure
6 illustrates the structure of a measurement construct in more detail. This figure depicts how the
base measures collected are dependent on the information needed by management. It also shows
how the data is combined into an indicator and analysis model to form the information product
provided to management.

Information Need

Measurable
Concept

Measurement
Construct

Entity Attribute

Information
Product

Information Need
Can be addressed by
many different measures

Measurable Concept
Describes possible ideas
to satisfy information
needs

Entities and Attributes
Specific products and
parameters to be
measured

Measurement Construct
Documents the detailed
definition of a measure

Information Product
The measures and
interpretations

Adapted from ISO/IEC/IEEE 15939 - Measurement Process

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 13

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 6: Measurement Information Model

Figure 7 contains a specific example of this, for the defect detection measure that is specified in
Section 8.6. The measurement specifications in Section 8 detail the information needs, base
measures, derived measures, and analysis models for each proposed measure.

Information
Needs

Entities Attribute Attribute

IndicatorInterpretation

Information
Product

Derived
Measure

Derived
Measure

Analysis
Model

Base
Measure

Base
Measure

Measurement
Function

Estimate or evaluation that
provides a basis for decision
making

Algorithm combining
measures and decision
criteria

Quantity defined
as a function of
two or more
measures

Algorithm combining two or more
base measures

A measure of a single attribute
by a specific method

Measurement
Method

Measurement
Method

Operations quantifying an
attribute against a scale

Property relevant to
information needs

Measurement
Information Model

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 14

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 7: Mapping Data to Measures

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 15

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5. MEASUREMENT PRINCIPLES
The “Information Category-Measurable Concept-Measures” (ICM) Table provides the PSM CID
measurement framework detailing common information needs and measures that are effective
for CID approaches. The information needs address team, product, and enterprise perspectives.
These different perspectives have different information needs and concerns. In some cases, the
same base measures may be aggregated to address high-level information needs. In other cases,
unique measures are required. The ICM Table also identifies a set of measures that have been
identified as being practical measures to address these information needs, based on practical
experience from the working group members. The ICM table is included in Section 7.
Some key principles for these information needs and measures include:
• The set of measures included in the ICM Table are sample measures identified through

survey and subject matter expert (SME) review as being important in selected circumstances
and at various levels.

• Team, product, and enterprise measures are included: not all can be aggregated.
• A minimum practical set of measures should be selected and tailored based on organizational

and program circumstances, tools, and processes. Often organizations or programs will select
a subset of these measures to emphasize for implementation and decision-making.

• The selected measures should have an identified stakeholder, inform decisions or answer key
programmatic questions, and drive actions. They allow early visibility into the issues so that
timely corrective action can be taken.

• The set of measures are process agnostic, but they were specifically developed for continuous
iterative development. Other PSM materials represent a broader set of materials and
processes.

• The collection of measures should be automated to the extent practical and integrated with
business workflows.

• A balance between speed and quality needs to be maintained, as illustrated in Figure 8.
There is often a ‘sweet spot’ tradeoff between speed and quality that delivers a best value
solution based on project objectives. Quality
needs to be monitored, in addition to speed, to
ensure that these measures are appropriately
balanced. An over-emphasis on speed can be at the
expense of product quality. An over-emphasis on
quality can slow the speed of delivery.

For the highest priority measures, sample measurement specifications have been developed that
detail the identified measures. Measurement specifications have been developed for:
• Automated Test Coverage
• Burndown
• Committed vs. Completed Progress
• Cumulative Flow
• Cycle Time / Lead Time

• Defect Detection
• Defect Resolution
• Mean Time to Restore (MTTR) / Mean Time

to Detect (MTTD)
• Release Frequency
• Team Velocity

See Section 8 for these specifications. The ICM table and the sample measurement specifications
can also be found at http://www.psmsc.com/CIDMeasurement.asp

Figure 8: Speed - Quality Sweet Spot

http://www.psmsc.com/CIDMeasurement.asp

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 16

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6. NEXT STEPS
This version of the PSM CID measurement framework is an initial set of measures that have
proven to be useful in practice. Additional measures will be considered and added in future
releases. One of the most critical missing elements is a measure of user value. This is a measure
of the value of a particular capability or feature to the end user in the operational environment.
There is also a separate measure of business value for items that are important to the program,
but not of interest to the end user. Another critical missing element is how to count size for
estimating.
Known future additions include:

• Value assessment (from end user, acquirer, supplier, and business perspectives)
• Technical Debt
• Security
• Size measures for estimating
• Additional focus on enterprise measures

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 17

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7. ICM TABLE
Table 5: Issues, Categories, and Measures

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

Schedule and Progress Work Unit Progress
(team, product)
Milestone
Completion
(enterprise)

Are story points
delivered as
committed? Are we
still on track to
deliver all story
points per roadmap?
(on plan)

Are features/capabilities
delivered as committed?
Are we still on track to
deliver all features/
capabilities per roadmap?
(on plan) What are the
features/capabilities at
risk of not being
completed as scheduled?
Are all capabilities/
requirements assigned to
releases?

Are capabilities
delivered as committed?
Are we still on track to
deliver all capabilities
per roadmap? (on plan)
What are the capabilities
at risk of not being
completed as scheduled?

Burndown
Committed vs.
Completed
Velocity

 Work Unit Progress Did we deliver expected
capabilities / features? Is
the roadmap still valid?

Is the user satisfied with
the delivered products?
Do they provide the
desired functionality
when needed?

Feature or Capability
Implementation

 Work Unit Progress Is the integration and test
progress proceeding as
planned?

 Test Progress

 Work Unit Progress Is the flow of work
moving forward through
the process work flow
states?

 Cumulative Flow

 Work Backlog How much outstanding
technical or mission debt
exists?

 Feature or Capability
Backlog

Technical Debt

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 18

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

Resources and Cost Financial
Performance

 What is the cost to
release? (capability
development through
deployment)

What is the cost to
release? (capability
development through
deployment)

Cost ($)
Effort

 Financial
Performance

 What is the estimated cost
and schedule for a new
CID product or release?
What is the estimated cost
and schedule per feature
or capability?

What is the estimated
cost and schedule for a
reference feature or
capability? (historical
reference)

Estimate vs. Actual
Cost/Effort
Estimate vs. Actual
Effort
Estimate vs. Actual
Schedule
Earned Value

 Financial
Performance

 Are the feature level
estimates accurate and
feasible?

How accurate are the
estimates across the set
of enterprise programs?

Estimation Accuracy

 Personnel Effort Do we have the
appropriate team
members for each
identified role (skills
and skill levels) with
appropriate training?

 Staff Experience

 Personnel Effort How much turnover is
occurring on the teams
and as a whole?

How much turnover is
occurring on the
programs?

Team Turnover Rates
Program Turnover Rates

 Personnel Effort What is the
satisfaction of the
workforce?

What is the satisfaction of
the workforce?

What is the satisfaction
of the workforce?

Net Promoter Score
(NPS)

 Facilities and Support
Resources

 How quickly can a new
tool chain or
environment be
deployed?

Time to Deploy

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 19

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

Size and Stability Functional Size and
Stability
Physical Size and
Stability

How much work
must be done?

How much work must be
done?

How much work must
be done?

Committed vs.
Completed
Requirements
SLOC
(Function Points?)

 Functional Size and
Stability

 How volatile are
capabilities or features?
Are we adding more
features? What is the
ability to accommodate
changes in user needs?

How volatile are
capabilities or
requirements? What is
the ability to
accommodate changes
in user needs?

Feature Volatility
Capability Volatility
Backlog Volatility

 Functional Size and
Stability

How much of the
product is newly
developed vs. reused
from other sources?

 Reuse of Artifacts

 Functional Size and
Stability

 What value is being
provided?

What value is being
provided?

User/Warfighter Value
Mission Effectiveness
Business Value

Product Quality Functional
Correctness

Do features/stories
work as expected?

Do features/capabilities
work as expected?

Do capabilities work as
expected?
Is rework identified and
managed?

Acceptance of
Completed Work
(Stories, Features,
Capabilities)
Rework Stories
Enhancement Stories
Defect Detection
Defect Resolution

 Functional
Correctness

Do changes break
previous
functionality?

Do changes break
previous functionality?

Do changes break
previous functionality?

Rework Defects
Rework Hours
Rework Stories
Change Failure Rate
Rollback
Defect Density

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 20

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

 Functional
Correctness

How many defects
were contained
(discovered) prior to
internal release?
How many defects
were released
(escaped) to an
internal customer
(e.g., Integration and
Test, Formal Test)?

How many defects were
released (escaped) to an
internal customer (e.g.,
Integration and Test,
Formal Test) or released
(escaped) to an external
customer (e.g., end
users)?

How many defects were
released (escaped) to an
external customer (e.g.,
end users)?

Defect Detection

 Functional
Correctness

What is the product
quality delivered
from the
development team?

What is the product
quality delivered to the
field?

What is the product
quality delivered to the
field?

Defect Detection
Defect Resolution

 Value Do features/stories
work as expected?

Does the delivered
product meet the
operational need?

Does the delivered
product meet the
mission need?

Value Assessment

 Security - Safety How secure is the product Vulnerabilities

 Supportability -
Maintainability
Dependability -
Reliability

 What is the reliability and
availability of operational
capabilities? How long
does it generally take to
restore service when a
service incident occurs
(e.g., unplanned outage,
service impairment)?

What is the reliability
and availability of
operational capabilities?
How long does it
generally take to restore
service when a service
incident occurs (e.g.,
unplanned outage,
service impairment)?

Mean Time to Restore
(MTTR)
Mean Time to Detect
(MTTD)

 Supportability -
Maintainability
Dependability -
Reliability

 What is the reliability and
availability of the
environment (e.g., people,
process, infrastructure)?

What is the reliability
and availability of the
environment (e.g.,
people, process,
infrastructure)?

Environment Reliability

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 21

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

Process Performance
(Process Effectiveness)

Process Efficiency -
Speed
Security - Safety

 How quickly can new
security vulnerabilities be
resolved and deployed to
fielded products?

Is the system cyber-
resilient?

Security Vulnerability
Lead Time
Mean Time to Restore
(MTTR)

 Security - Safety Have all safety-critical
items been resolved?

Is the system safe to
operate?

Safety Assessment
Status

 Process Efficiency -
Speed
Security - Safety

 How long does it take to
successfully complete
cybersecurity
audit/penetration testing?
Are security
vulnerabilities identified
and addressed
proactively?

Is the system cyber-
resilient?

Cybersecurity Test
Duration

 Process Efficiency -
SpeedSecurity -
Safety

 How long does it take to
receive ATO approval
for new releases?

Time to Certification and
Authority to Operate
(ATO)

 Process Efficiency -
Speed

Is the flow of work
(stories) moving
forward through the
value stream? Is the
flow of work as
efficient and
predictable as
needed?

Is the flow of work
(features, capabilities)
moving forward through
the value stream? Is the
flow of work as efficient
and predictable as
needed?

Are the evolving
stakeholder needs being
met when needed?

Committed vs.
Completed
Cumulative Flow
Capacity

 Process Efficiency -
Speed

Is the team
performing as
expected? How
much work can be
accomplished by a

n/a n/a Team Velocity
Acceleration

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 22

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

team in a future
iteration?

 Process Efficiency -
Speed

 How long does it take to
deploy an identified
feature/capability?

How responsive is the
program to change?

Cycle Time / Lead Time
Release Frequency

 Process Efficiency -
Speed

 What is the cadence of
product release or
deployment? How long
does it take to release a
minimum viable product?

What is the cadence of
product release or
deployment? How long
does it take to release a
minimum viable
product?

Release Frequency
MVP Release Duration

 Process Efficiency -
Speed

 How much time does it
take to conduct a full
regression test? How
much time for the
automated regression
test?

 Test Duration
Automated Test
Duration

 Process Effectiveness How much of the testing
is automated? How often
do we perform automated
testing?
How much capability is
tested in an automated
fashion?

How much of the system
testing is automated?
How much of user test is
automated?
How often do we
perform automated
testing?
How much of system
automated test is
credited for user test?

Automated Test
Coverage
Automated Test
Frequency

 Process Effectiveness
- Value

 What is the product value
(normalized
feature/capability
delivered by effort)?

What is the product
value (normalized
feature/capability
delivered by effort)?

Acceleration

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 23

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Information Categories Measurable Concept Team Information
Need

Product Information
Need

Enterprise Information
Need Potential Measures

Is productivity improving
over time?

Is productivity
improving over time?

 Process Effectiveness Is the work in
progress being
managed
appropriately?

Is the work in progress
and product backlog
being managed
appropriately?

Are there queues or
delays in our process
workflows that prevent us
from optimizing
throughput?

Are there (major) queues
or delays in our process
workflows that prevent
us from optimizing
throughput?

Cumulative Flow
Defect Resolution
Backlog Readiness

Customer Satisfaction Customer Support Is the user satisfied with
the delivered products?
Do they provide the
desired functionality
when needed?

Value Assessment

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 24

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8. MEASUREMENT SPECIFICATIONS
8.1 AUTOMATED TEST COVERAGE (PRODUCT OR ENTERPRISE MEASURE)

Measure Introduction

Description

In an iterative development approach, it is important not only to efficiently verify new features but to ensure
prior functionality is not impacted. Doing so manually can be time-consuming. Typically, code coverage is
verified primarily in structural (white box) testing at the unit level, and requirements are verified primarily in
functional/system test. Efficiency and throughput can be enabled by automated test suites executed at
multiple levels (unit level, functional level, regression testing).
The extent to which automated testing is implemented is a business decision depending on objectives and
constraints, such as velocity, quality, and cost vs. benefit. It may not be feasible or desirable to automate all
testing. Projects may set planned test automation objectives, such as 70%-80% coverage based on their cost
benefit analysis.
Often these automated test suites are integrated directly in the code pipeline and invoked upon each code
commit and build, or in nightly regression test batch jobs. (Refer to Figure 2 for context.) Test results (tests
passed, tests failed) can be distributed automatically in email so anomalies impacting the code quality and
pipeline can be quickly identified and resolved.

Relevant Terminology

Functional Testing Testing against the requirements or function of the software, without considering
the internal implementation. Sometimes termed black box testing.

Structural Testing Testing the internal structure, design, implementation, or logic of software, such as
paths, conditionals, or branches through the code. Sometime termed white box
testing.

Information Need and Measure Description

Information Need
How much of the testing is automated?
How many tests have been validated and approved?
How much credit is given in formal test (e.g., DT/OT) for automated test?

Base Measure 1 Total Requirements [integer > 0]

Base Measure 2 Requirements Tested [integer > 0]

Base Measure 3 Requirements Tested Through Automation [integer > 0]

Base Measure 4 Requirements Tested Manually [integer > 0]

Base Measure 5 Code Constructs (e.g., classes, conditionals, files, lines, packages) [integer > 0]

Base Measure 6 Code Constructs Tested by Automated Test [integer > 0]

Base Measure 7 Automated Test Cases Passed [integer > 0]

Base Measure 8 Automate Test Cases Failed [integer > 0]

Derived Measure 1
Requirements Not Tested =
(Total Requirements) – (Requirements Tested Through Automation) – (Requirements Tested Manually)
[integer > 0]

Derived Measure 2
Percentage Requirements Tested Through Automation =
(Requirements Tested Through Automation) / (Total Requirements) * 100 [percentage]

Derived Measure 3
Percentage Requirements Tested Manually =
(Requirements Tested Manually) / (total requirements) * 100 [percentage]

Derived Measure 4
Percentage Requirements Not Tested =
(Requirements Tested Not Tested) / (total requirements) * 100 [percentage]

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 25

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Derived Measure 5
Percentage Code Constructs Tested =
(Code Constructs Tested by Automated Test) / (Code Constructs) * 100 [percentage] (for each code
construct) [percentage]

Indicator Specification

Indicator Description
and Sample

Figure 9 depicts the percentage of project requirements that are verified by automated vs. manual testing over
time. In this example, the project set a planned objective for 70% automation, and ultimately met and
exceeded that objective. Percentages are used rather than absolute values to facilitate comparisons across
projects, but with the total number of requirements plotted on the secondary axis for considering scale and
complexity of the test automation effort. Note also that the Automated Test Coverage will change over time
as new requirements are added, and tradeoff decisions can be made on the benefit of investing further
program effort to develop new automated test cases to increase coverage. This may include estimating the net
impact on program throughput, quality, or cost.

Figure 9: Automated Test Coverage (Project Level)

At project startup an initial requirement set is established that evolves iteratively (with additions,
modifications, deletions) across the project life based on collaboration with the product owner and other
stakeholders. Test cases (automated and manual) are developed to verify requirements as they are
implemented. By iteration 9, the automated test suite is verifying over 70% of requirements, supplemented
by manual test cases that verify nearly all project requirements. In iteration 18, the product owner deleted a
capability from the backlog and requirements count was reduced. Over time, additional automated tests are
developed that increase automated coverage while reducing the dependence on manual testing, although both
are supplemented regularly as new requirements are added. The project has sustained its automated test suite
to generally meet the project objective of 70%-80% automated test coverage.

0% 0%

19%25%30%
45%49%

58%
72%66%

74%74%
82%

69%73%75%76%77%77%
66%70%

79%83%79%81%

0

50

100

150

200

250

300

350

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l R
eq

ui
re

m
en

ts

%
 R

eq
ui

re
m

en
ts

 V
er

ifi
ca

tio
n

by
 T

es
t T

yp
e

Weeks

Automated Test Coverage (Project)

Automated Test Manual Test Not Addressed Planned Total Reqts

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 26

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Effectiveness of automated testing should be monitored. The pass/fail success status of automated tests is
often available from automated test tools, as illustrated below in Figure 10, so anomalies breaking the code
pipeline can be quickly detected and resolved. The quantity of requirements covered in automating testing is
depicted in the amplitude. Requirements that failed an automated functional test are shown in red, indicating
quality of the pipeline over time. Some tools may also provide additional information, such as Yellow for the
requirements that were skipped, or the requirements with no automated test.

Figure 10: Automated Test Pass/Fail Status

This automated report from the program test tool indicates a low number of requirements (<5) over time that
failed automated testing. All test failures are investigated. Some of the test failures are due to enhancing the
automated test scripts to verify new requirements as they are added, others are the result of regression test
failures where baseline product functionality was impacted by new enhancements, but this quickly stabilizes
as the product development baseline matures.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 27

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The extent of code structural coverage from automated (white box) testing can increase confidence in
development baseline quality. In Figure 11 test coverage is collected for each build and depicted by trends
for % coverage of structural code constructs (classes, conditionals, files, lines, packages). The extent of
coverage can indicate the risk or confidence in code quality, suggest a need for additional testing, or the
potential risk of incurring defect escapes.

Figure 11: Code Coverage from Automated Testing

100% of packages and 95% of classes are addressed by automated tests. 85% of the code (lines of code) and
75% of branches are currently exercised; coverage dropped in iteration 980 (to 70% of code, 65% of
branches) as new functionality was added, but has continued to grow in subsequent releases as the automated
test suite was expanded to address these enhancements. The project has set a target for > 80% of code and
branches exercised in automated testing, so the test suite is being enhanced for additional logic test cases
focusing on the most risky or complex modules.

0%

20%

40%

60%

80%

100%

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

Pe
rc

en
t C

od
e

Co
ve

ra
ge

Code Coverage by Classes/Conditionals/Files/Lines/Packages

Classes Conditionals Files Lines Packages

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 28

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Description
and Sample
(continued)

At the enterprise level, the extent of automated testing utilized across projects can be monitored, as reflected
in Figure 12. The enterprise may set business objectives for the extent of automated testing across projects
(e.g., 70%), subject to project-specific characteristics and constraints.

Figure 12: Automated Test Coverage (Enterprise Level)

Automated test coverage percentages are collected from projects and aggregated at the enterprise level to
monitor the success of implementing automated testing. Measures are displayed for each project in both
relative (%) and absolute terms (Requirements Verified). Absolute values are used for context in evaluating
the overall impact of the project automated test coverage; larger projects may have greater challenges in
scope but also more resources available to realize the benefits of automation. Some projects are early in their
development cycle and development of automated test cases are still in work. Overall, the project average is
68% automation, but when weighted by the number of requirements verified the coverage is 73% due to the
higher impact from larger projects. Analysis and actions at the organizational level will depend on the
characteristics of the individual projects, the extent to which performance and quality measures are impacting
objectives, and the extent to which they may be positively impacted by investing in additional automation.

A B C D E F G
70% 70% 70% 70% 70% 70% 70%

Automation % 46% 68% 82% 74% 71% 53% 85%
Automated Reqts 48 48 200 381 116 51 230
Total Reqts 104 70 244 515 163 97 270

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Au
to

m
at

ed
 T

es
t C

ov
er

ag
e

%

Project Test Automation Status Project Avg: 68%
Weighted: 1,073 / 1,463 = 73%

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 29

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Analysis
Model

Automated Test Coverage (Project Level):
• What percentage of functional requirements are verified with automated testing? Is each requirement

fully covered by the automated testing, or are some aspects not verified?
• Any requirements not verified automatically must be verified manually, which can impact productivity,

schedule, and resources. Apply decision tradeoffs for the cost vs. performance benefit of investing effort
to expand the extent of automated test coverage.

Automated Test Pass/Fail Status:
• Are automated tests completing successfully, or are there anomalies impacting the code pipeline that

should be investigated?
• Automated tests are typically conducted regularly as part of the code and unit tests in the code

development pipeline, such as upon each code commit or in nightly regression tests. Summary test
reports can be automatically generated and distributed by the automated test tools. 100% success of
automated tests passing is often a criterion for advancing the code baseline to production. Discrepancies
could be in the code, or in the test cases themselves, but either should be investigated.

Code Coverage from Automated Testing:
• How much of the code structure is covered by the automated test suite? Which parts of the code are not

covered (e.g., any safety critical code, interfaces, interoperability requirements)?
• Code coverage is a tradeoff between investment, risk, and return; although 100% coverage may be

desirable, that might not be practical within available environments, resources, interfaces, and
constraints.

Automated Test Coverage (Enterprise Level):
• What is the extent of automated testing conducted across the organization’s projects? What benefits to

organizational performance (e.g., cycle time, quality, throughput) are enabled by effective automated
testing?

Automated testing is a primary enabler for achieving efficiency, quality, and cost savings at both the project
and organizational levels. Organizations should monitor automated test measures in relation to achievement
of their desired performance objectives.

Decision Criteria

Automated test coverage alone is not an objective; it is the associated gains in accelerating performance and
improving product quality at the project and organizational levels that make investments in automation
worthwhile. Automation measures should be evaluated in the context of other performance measures, such as
those defined elsewhere in the PSM CID measurement framework. Industry experience suggests that
automation in the range of 70%-80% is often beneficial in producing improved performance outcomes, but
this may vary by domain or application.
If automation measures are lower than planned, or if there are process effectiveness or product quality issues
that are impacting objectives, consider root cause analysis and decision tradeoffs to assess the impact and
determine if they can be improved by further investments in test automation.

Additional Information

Additional Analysis
Guidance

Test automation and coverage are key elements of achieving faster and more comprehensive releases with
higher code quality. These should be used in conjunction with quality measures to ensure the adequacy of
testing and achieve acceptable, inherent quality levels. A reasonable goal is to achieve near instantaneous
automated test results with acceptable quality. Testing efficiency and speed are closely related to achieving
other performance measurement objectives such as lead time, cycle time, and release frequency. Robustness
of the testing conducted should also be considered (e.g., stress testing, boundary conditions on valid data
inputs).
Additional project performance measures, such as effort, schedule, and cost, can be correlated with
automated test coverage measures to evaluate the performance benefits (e.g., cost savings, productivity,
quality) achieved through automated testing.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 30

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Implementation
Considerations

Measures for code coverage and requirements coverage are directly available from many automated
development tools commonly integrated across the tool chain. However, the emphasis should be on thorough
testing sufficient to ensure product quality rather than achieving high code coverage numbers. Code coverage
is an important factor, but by itself, is not sufficient to ensure product quality. Automated test cases could
focus on areas of high risk, complexity, or dependencies where repeatability or regression testing are
important factors, especially in the near term.
Relying solely on automated test tools and scripts may not be wholly sufficient to exercise all functionality
needed (e.g., user interfaces, databases). It may be necessary to supplement automated test scripts with
manual effort to execute additional test cases and validate that the automated test is sufficiently
representative of the overall functionality.
Automated testing may be conducted at various or multiple points in the workflow, for instance before or
after the baseline merge. A best practice is to execute automated test suites nightly or as part of the pipeline
following each code commit.
For existing systems, the enterprise will need to make a business decision as to whether it is worth the
investment to develop automated tests. This will be dependent on the necessary infrastructure to support
automated test, the expected lifecycle of the system, the level of updates/regression test typically required,
etc.
Automated test scripts are a valuable work asset that should be sustained in a manner similar to source code.
Test scripts may need to be enhanced or refactored as the product evolves.

Additional Specification Information

Information Category Process Performance (Process Effectiveness)

Measurable Concept Process Effectiveness

Relevant Entities System, Test cases

Attributes Amount tested, amount automated tested

Data Collection
Procedure

Data is typically collected by automated tools upon execution of test scripts as part of standard pipeline
workflows. Results are recorded in team tracking tools. Summaries of test results and coverage can often be
provided automatically nightly or upon completion.

Data Analysis
Procedure

Data is reviewed and analyzed to ensure adequate quality for each candidate product. Discrepancies in
process effectiveness, product quality, or test coverage not meeting threshold targets may indicate updates to
code or test scripts are necessary.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 31

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.2 BURNDOWN (TEAM, PRODUCT, OR ENTERPRISE MEASURE)
Measure Introduction

Description

Burndown is used to monitor completed work items (e.g., stories, features, capabilities) vs. planned work
items for an iteration, release, or capability. Work items may include design, code, test and all supporting
activities (e.g., requirements development, configuration management and quality engineering). Progress
toward completing planned work is depicted graphically to provide an indicator of the likelihood of meeting
planned goals.

Relevant Terminology See Section 3: Ontology and Definitions.

Information Need and Measure Description

Information Need
What is the status of the iteration, release, or capability? Will all the remaining committed work be
completed as planned? What are the features/capabilities at risk of not being completed as scheduled? What
are the trends in execution relative to plan?

Base Measure 1
Planned Work (integer scale)
(e.g., Story Points/Features/Capabilities)

Base Measure 2
Completed Work (integer scale)
(e.g., Story Points/Features/Capabilities)

Derived Measure 1
Open Work = Planned Work - Completed Work
(e.g., Story Points/Features/Capabilities)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 32

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Specification

Indicator Description
and Sample

In Figure 13, the orange line represents the number of open features over time, while the blue line indicates
the planned burndown.

Figure 13: Release Burndown

At release planning, work items representing 60 features were committed. While little progress was made
during the first week to a planned training event, the teams recovered and is still projected to complete the
planned work by the end of the release.

Analysis
Model

At the team level, the focus is generally on stories or story points open through the iteration. Is the team
completing the committed work items? Are they significantly behind or ahead of the burndown plan? Are
items blocked? What is the likelihood of meeting the commitment on time? Can additional backlog stories
be brought into the iteration? Are teams improving execution over time?
At the product level, the focus turns to features or capabilities across releases. At the enterprise level, the
focus is generally on capabilities for external releases.

Decision Criteria

At the team level, lack of progress (e.g., not reducing open story points at all over several days) and variances
from the plan (e.g., 5%) should be reviewed for action by the team. Data is generally not shared externally to
the team.
At the product level, variances of over 10% are reviewed for causes of roadblocks and consideration of
replanning.

0

10

20

30

40

50

60

70

Fe
at

ur
es

Release Burndown

Planned Open

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 33

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Information

Additional Analysis
Guidance

Use this metric with the velocity metric and other work unit progress metrics (e.g., test progress, cumulative
flow). The velocity metric supports the planned story points for each iteration. The actual completed story
points from the iteration is an input to the velocity metric. Review with other work unit progress metrics
may support an assessment of overall risk and may impact prioritization of work for future iterations.
Consider bounds of estimated burndown based on historical performance, e.g., best case, worst case, Monte
Carlo analysis.

Implementation
Considerations

Some teams may use hours instead of story points (or may map story points to hours).

Additional Specification Information

Information Category Schedule and Progress

Measurable Concept Work Unit Progress

Relevant Entities Product

Attributes Story Points, Features, Capabilities

Data Collection
Procedure

At the team level, story points committed for each iteration are determined at the iteration planning meeting.
This value is determined from the velocity metric. Based on the average velocity and other factors (e.g.,
vacations), the team commits to a number of story points for the next iteration. Work items (e.g., stories,
tasks) are selected to match this commitment. Work items are closed when completed and meet their
evaluation criteria, and burndown progress is updated daily.
At the product level, the features and capabilities committed for each release are determined during release
planning. Commitments may be replanned as work is completed and priorities change.

Data Analysis
Procedure

For the team, Burndown is analyzed daily for progress/risk and at the end of each iteration to determine if the
story points were delivered as committed. The final story points completed value is an input to the velocity
metric.
For the project, Burndown is analyzed periodically (e.g., monthly, quarterly, by release). For the enterprise,
Burndown of capabilities for major events is analyzed.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 34

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.3 COMMITTED VS COMPLETED (TEAM, PRODUCT, OR ENTERPRISE MEASURE)
Measure Introduction

Description

Committed vs Completed is a measure of progress toward completing planned, or expected, features and
capabilities. At the team level it may be used to measure progress of each iteration. At the program or
organizational level, it can be used to measure overall progress toward a release and completing product
development. It may also be used to measure quality of the product by indicating product readiness with
respect to expected capability, or functionality.

Relevant Terminology

Stories Committed Stories the team has committed to complete within an iteration.
Features, or Capabilities, or
Committed

Features and capabilities committed to the customer by the program to
be included in the product.

Completed Stories, Features, or
Capabilities

Stories that have completed their level of verification and validation
and have been proven to work as expected.

Information Need and Measure Description

Information Need
Are Stories, Features, or Capabilities delivered as committed? What are the Stories/Features/Capabilities at
risk of not being completed as scheduled?

Base Measure 1
Work Items Committed Each Iteration (integer)
(e.g., stories, story points)

Base Measure 2
Work Items Completed Each Iteration (integer)
(e.g., stories, story points)

Base Measure 5
Work Items Committed Each Release (integer)
(e.g., features, capabilities)

Base Measure 6
Work Items Completed Each Release (integer)
(e.g., features, capabilities)

Derived Measure 1
Percent Work Items Completed = (Sum of All Work Items Completed) * 100 / (Sum of All Work Items
Committed) for a desired iteration, release, or program
(e.g., stories, story points, features, capabilities)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 35

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Specification

Indicator Description
and Sample

In Figure 14, Stories Committed is graphed as a column for each iteration [blue bar] and stories Completed as
a column for each iteration [green bar]. Cumulative Percent Stories Completed are also graphed as a line
chart across iterations (secondary axis). The indicator may be aggregated for a release, set of features,
capability, or a complete project to provide progress toward product completion.

Figure 14: Stories Completed versus Committed

Iterations 1, 2, 3, 5 and 6 did not complete expected stories. During iterations 1 and 2, the team was forming
and learning to work together. Iteration 3 completed close to expected stories. Iterations 4, 7, and 9
completed above expected stories. The team was working together and attempting to catch up on the backlog
of stories. This could also reflect rework that was being identified and resolved. Current percent complete
does not indicate a need for a re-plan but progress and velocity should be watched to ensure the team can
complete the remaining backlog over the next two minor iterations.

Figure 15 shows a product level view of completion, for Features Committed. Monthly data is graphed, along
with a cumulative percentage complete.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 36

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 15: Program Completed versus Committed

The month to month cumulative view of the same data shows the project is not completing committed
features creating a backlog of work. The gap between planned percent complete and actual percent complete
is increasing slightly and is behind target to complete all features by project end. Some corrective actions
may be needed.

Analysis
Model

Is the team and project completing the assigned work? Will they deliver required features within allocated
project schedule? Teams may not complete all Stories for each iteration, so this indicator provides
information about any backlog of features growing as you progress through the release or program.

Decision Criteria

If the gap between committed and actual completion is more than 5%, than the team should investigate
causes of lack of completions. If any team is more than 10% behind commitments, than the project
management should investigate and consider corrective action.
If the product completion is more than 10% behind commitments, than alternative courses of action (e.g.,
adding additional teams or changing commitments) should be considered.

Additional Information

Additional Analysis
Guidance

Use this with the Committed Backlog, Burndown, and Velocity to ensure project will release identified
features (or capabilities) as scheduled. The project may want to use different levels of aggregation to view
the progress at different levels to expose any adverse trends.
If a story is not completed within its expected iteration, it will be placed back on the backlog and re-
prioritized for a future iteration. If a team completes assigned stories for an iteration with additional time to
work, they should select additional stories from the backlog.
Stories, Features, or Capabilities may be weighted by complexity to give a more complete view of program
completion.

Implementation
Considerations

In general, Committed vs Completed Stories is specific to a team since story point size may vary from team
to team.
An aggregate measure at the Feature or Capability level can be compiled across teams and compared to
capability roadmap to see if project is completing multi-team capabilities within project expectations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19

Cu
m

ul
at

iv
e

Pe
rc

en
t C

om
pl

et
e

Fe

at
ur

es

Program Completed vs Committed Progress

Committed Completion Actual Completion Actual Percent Planned Percent

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 37

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Specification Information

Information Category Schedule and Progress

Measurable Concept Work Unit Progress

Relevant Entities Stories, Features, or Capabilities

Attributes Story Points (estimated size), Iteration Committed, Iteration Completed for each entity

Data Collection
Procedure

For team measure, data is collected at the end of each iteration by the team lead from the team tracking tool.
Story Points must be tested and satisfy “Done” criteria, with no open defects to be counted as completed. If a
Story does not satisfy “Done” criteria, then it is not considered “Complete” and its Story Points are not
included in the total of Completed Story Points.
For product or enterprise measures, data is collected periodically (e.g., monthly, quarterly, end of each
iteration or release).

Data Analysis
Procedure

Data is analyzed at the end of each iteration by the team during the iteration review and considered during the
planning session for the follow-on iteration.
The data is also aggregated and analyzed at summary levels across iterations or releases to ensure the
program is completing its committed capabilities.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 38

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.4 CUMULATIVE FLOW (TEAM, PRODUCT, OR ENTERPRISE MEASURE)
Measure Introduction

Description

Cumulative flow is a tool to visualize work in progress, cycle time and throughput. In this specification, the
indicator (Cumulative Flow Diagram) is described, with base and derived measures that duplicate other
measures listed above.
Continuous iterative development (CID) methods are focused on the delivery of capabilities/features
achieved by managing the flow and throughput of work through a process. Understanding and managing
flow is fundamental to achieving stable processes with predictable performance and the efficient use of
resources.

Flow is visualized and represented graphically in a Cumulative Flow Diagram (CFD) depicting the total
quantity and transition of work items in each workflow state over a time period. It is generally desirable that
the amount of work distributed across each process workflow state is in balance (new work is equivalent to
the completion of work in each workflow state). This can be visualized on a CFD as roughly parallel upper
and lower bounds of the cumulative work through each state. Failure to match departures and arrivals for
each state can result in queues, backlogs, or inefficiencies in the progress of work completion or utilization of
resources.
Adherence to effective processes ensuring standard CFD assumptions, rules, and constraints, can help teams
achieve predictable performance.
Reference: Actionable Agile Metrics for Predictability (Vacanti, 2015)

Relevant Terminology

Cumulative Flow Diagram A tool used in queuing theory showing whether the flow of work is
consistent; visually points out shortages and bottlenecks.

Throughput The number of work items completed per unit time.
Work in Progress (WIP) The number of work units in progress between workflow steps in a

process.
Work Items Item that indicates the type of work and what needs to be done (e.g.,

tasks, stories, features, capabilities). It may include the target date for
completion.

Information Need and Measure Description

Information Need
Is the flow of work moving forward through the value stream (through the process work flow states)?
Is the throughput of work predictable?
Are there queues or delays in our process workflows that prevent us from optimizing throughput?

Base Measure 1..N

Base Measures 1-N: The number of work items in each of N workflow states. Collected using counts or
times.
Note: These states vary by project, organization, or defined process. For the example indicators below, the
workflow states used include:
• To Do: Work items from the product backlog that have been approved/accepted for implementation

(committed to), but not yet started. They generally have been assigned to an iteration or release. The
product backlog may also include items that are never implemented. To best depict flow, CFDs do not
typically include Backlog work items.

• In Progress: Work items that have been approved/accepted for implementation (committed to) and have
started development.

• Done: Work items have completed all development activities in an iteration and are ready for internal
release.

• Deployed: Work items have completed all development activities defined by the process, including
integration and test activities, and are deployed in an internal or external release.

Arrivals DeparturesWork in Progress

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 39

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Derived Measure 1

Approximate Average Cycle Time = average duration for all completed work items
Note: The duration is an approximate based on the set of completed work items for a given time range. It is
not based on an average of individual work item durations. See Cycle Time / Lead Time specification for a
measure based on individual work item durations.

- Other derived measures for transitions between workflow states can be calculated similarly.
Derived Measure 2 Throughput = average of Work Items Done per unit time
Derived Measure 3 Work in Progress = average of Work Items in Progress per unit time

Indicator Specification

Indicator Description
and Sample

Flow is commonly depicted in a Cumulative Flow Diagram (CFD), Figure 16, depicting the stacked
cumulative quantity of process arrivals, departures, and WIP in bands for process workflow states over time,
as illustrated in the example below. The amplitude of the CFD chart indicates the amount of work in each
workflow state.

Figure 16: Cumulative Flow Diagram

This example CFD indicates a project workflow with a team capacity that is well balanced with demand. The
number of tasks in each workflow state (height of the bands, or vertical distance between lines) is holding
fairly steady and narrow, with relatively parallel lines (slopes) indicating a balance of work arrivals (added
to the top orange, To Do, Band) transitioning smoothly into subsequent work flow states culminating in the
bottom dark blue, Deployed, band. There are no notable queues, delays, or backlogs (widening CFD bands),
except for the arrival of new needs and objectives from the customer in September and March. These are
reflected in the Release Backlog (increases in the height of the orange To Do band). These were steadily
worked off and implemented by the project team at its consistent rate and capacity (indicated by maintaining
fairly stable slopes of the In Progress, Done, and Deployed lines). Throughput rate is steady with no
significant changes, except for a short flattening of the progress curves over the December holiday period,
that resumed quickly when the team returned to full staffing in January.
This workflow balance over the year shown is sustantiated further by an average task departure rate (1.31
tasks/day), well matched to demand reflected in the average arrival rate (1.29 tasks/day).

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 40

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Description
and Sample (cont.)

For projects adhering to standards for collection and reporting of CFD data, derived measures for average
WIP, average Throughput, and approximate average Cycle Time are related by Little’s Law (as discussed in
Actionable Agile Metrics for Predictability). Generally, these summary cumulative measures can be derived
and visualized for a given time range from a CFD diagram as in the abstraction shown in Figure 17. The
figure below further illustrates these relationships

Figure 17: Notional CFD Diagram

Continuing from the above project CFD example, the project average WIP, average Throughput, and
approximate average Cycle Time can be calculated and plotted over time, as in Figure 18.

Figure 18: Workflow by Period and Rolling Average

Little’s Law:
CT = WIP /TH
TH = WIP / CT
WIP = CT * TH

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 41

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

This example provides further numeric substantiation of process effectiveness consistent with the CFD
indicator analysis. Derived CFD measures for average WIP, average throughput, and average cycle time
indicate fairly stable performance over time that could be useful in predictably planning future estimates.
Approximate Lead Time (turnaround for implementing and deploying accepted customer requests) has
reduced on average over the last year, even considering the two significant spikes in receipt of new requests
and the short delays in throughput over the December holidays.

Note that although CFD measures may indicate stable and consistent workflow process performance, this
does not necessarily imply this level of performance fulfills the business need. Process improvements and
performance efficiencies may yet be needed to meet the Voice of the Customer. Also note these measures
may be specific to the team (e.g., methods for defining tasks, stories, story points) or application domain
(e.g., embedded firmware, command and control, information systems, high reliability space applications), so
organizations should be cautious about projecting performance across other projects. It may be most
beneficial to monitor overall workflow trends and potential areas of concern rather than focusing on absolute
measures.

Analysis
Model

Is work arriving and being completed at consistent rates? Is there a steady proportionate ratio of WIP across
workflow states, or are there queues, delays or inefficiencies indicated by widening CFD bands that should
be addressed?
The shapes of CFD bands indicate if the flow of work is being processed and completed at predictable steady
rates (e.g., consistent slopes with relatively parallel bands). Other shapes (e.g., diverging bands, flat lines, S-
curves) can indicate inefficiencies, mismatched arrivals and departures, or delays in completing the flow of
work.
Is cycle time and throughput compatible with achieving the project plan and product roadmap? Are these
measures stable? Comparing derived average cycle time against actual calculations (see Cycle Time/Lead
Time specification) can indicate potential process anomalies, such as giving preferential priority to certain
tasks. What can be done to increase throughput or reduce WIP, if necessary, to meet performance objectives?
Additional details of CFD derived measures and related topics such as technical debt are beyond the scope of
this specification and are described further in referenced materials.

Decision Criteria

Significant variations (e.g., + 10%) in the slope or width of CFD workflow band curves may indicate
performance issues, queues or delays in bringing work to closure. Root causes should be analyzed, and
corrective actions implemented as appropriate to bring workflow back within expected ranges needed to
execute the plan.

Additional Information

Additional Analysis
Guidance

Anomalous CFD band shapes indicating potential delays or negative trends in WIP, cycle time, or throughput
may require analysis of root causes. Often reducing WIP or batch sizes can improve process throughput and
stability.

Implementation
Considerations

CFDs are often available as built-in reports from common agile workflow management tools, which provide
additional filtering and reporting options according to the process workflow states in use. CFDs can also be
constructed based on measures collected, analyzed and reported using spreadsheet tools. The sample intervals
for collection or analysis of CFD data items (e.g., daily, weekly, monthly) may vary based on the program’s
defined processes or business environment.

Additional Specification Information

Information Category
1. Schedule and Progress
2. Process Performance

Measurable Concept
1. Work Unit Progress
2. Process Effectiveness

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 42

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Relevant Entities Tasks, stories, features, capabilities.

Attributes Arrivals / departures for workflow state transitions

Data Collection
Procedure

Workflow state information (quantities by state over time) and Cumulative Flow Diagrams are typically
obtainable directly from software task planning and management tools.

Data Analysis
Procedure

Cumulative flow is analyzed by the team regularly (e.g., daily or weekly) to monitor work in progress and
completion. Measures are analyzed periodically (e.g., monthly, quarterly, end of each iteration or release) to
determine if process performance levels are in line with objectives and sufficient to meet work remaining in
the project plan. Corrective actions and process improvements are identified to bring performance within
expectations as needed.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 43

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.5 CYCLE TIME/ LEAD TIME (TEAM OR PRODUCT MEASURE)

Measure Introduction

Description

Cycle Time and Lead Time can be used to evaluate efficiency in
developing work products and as predictors for estimating future
work. Cycle Time and Lead Time are similar and related measures
that determine the duration for completing new work or products.
The differences are in when start times are measured, as depicted in
the diagram to the right, and described further below.
Refer also to Figure 2, Measurement Context Diagram.

Relevant Terminology

Cycle Time The elapsed time from when work is started until the time work has been completed.
(e.g., Capability, Feature, Story, Defect). Cycle Time is expressed in terms and
context of the team capability. It is typically targeted at measuring repeatability and
predictability of team performance for well-scoped work so that results are
comparable across multiple similar efforts (stories, features, capabilities). It often
excludes the up-front effort needed to define and prepare the work to be implemented,
such as backlog, prioritization, planning, requirements analysis, design.

Lead Time Similar to cycle time but is expressed in terms and context of the user or stakeholder
perspective. It is measured from the time work is identified and a request is provided
to the time until the time it is satisfied. Lead Time includes these up-front necessary
activities such as backlog, prioritization, planning, requirements analysis, and design.

Lead Time, Cycle Time (and Release Frequency) are closely related measures calculated similarly. The
primary difference is in the information need and objective (repeatable team performance vs.
user/stakeholder need) which can drive when the start/end times are measured for various activities. Lead
Time may also be used to measure a higher-level aggregate business need, as opposed to Cycle Time which
may measure the base elements needed to ultimately satisfy that business need.

Information Need and Measure Description

Information Need
(Cycle Time)

How long does it take to release a viable product (team, product, enterprise)

Information Need
(Lead Time)

How long does it take to deploy an identified feature/capability, once a request is submitted? (product)

Base Measure 1 Start time for a process activity (date and time)
Base Measure 2 End time for a process activity (date and time)

Derived Measure 1

Elapsed Time = (End Time – Start Time) + 1
(Units may vary based on team context, capability, cadence; e.g., hours, days, weeks, months.
May also vary based on calendar time vs. work days. Results with fractional values are rounded up to the
next unit.)
Examples:
1: Cycle Time = 08/21/2019 – 08/20/2019 = 2 days
2: Cycle Time = Fri 09/13/19 – Mon 09/02/19 = 12 calendar days = 10 workdays = 2 work weeks
3. Cycle Time = 09/01/19 12:52 – 09/01/19 08:05 = 5 hours
4. Lead Time = 08/31/19 – 6/15/19 = 78 calendar days

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 44

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Specification

Indicator Description
and Sample

Figure 19: JIRA Control Chart focusing on an area of interest

Figure 19 is from a JIRA Control Chart. Report filters are available to focus on areas of interest (e.g., time
ranges, event types, product or team characteristics). Other tools and charts are also common in industry, but
typically include information such as:

• Plots of cycle time or lead time measures for software deliveries over a defined time range.
• Statistical analysis of process performance measures (e.g., mean, median, rolling average, standard

deviation)
In the example shown, the team has delivered 278 releases over the past 6 months with a median cycle time
of nearly 4 days. There has been a fairly broad range of performance during this period overall (indicated by
a consistently wide standard deviation in the blue shaded range) with some outliers that resulted in an overall
mean cycle time of 5-6 days. The team usually meets the organizational objective for implementing releases
of new capability within one week of starting work, but still has challenges with consistent performance and
predictability, as indicated by the rolling average and standard deviation for the 55 most recent releases.
Analysis of the outliers showed poorly defined requirements which caused extended periods of work in
progress for those stories. The team (supplier and acquirer) implemented actions to ensure that requirements
analysis and design were properly vetted before work started.
The frequency of product releases appears relatively consistent judging by the spread of plotted clusters of
product deliveries over this time period. However, the team did not show much improvement in performance
over time. The team is aiming to reduce cycle times and variation by improving its processes and training for
story point estimation, and consistently planning and implementing smaller batch sizes for future releases.

Small standard
deviation indicates
good predictability

Investigate root
causes for outliers

Wide variation impacts overall
performance and predictability

https://confluence.atlassian.com/jirasoftwareserver0710/control-chart-953146777.html

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 45

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Analysis
Model

Analysis of Cycle Time or Lead Time measures can indicate process performance trends or potential
indicators of issues for root cause analysis and performance improvement. Example analyses may include:

• Process efficiency and stability (increase/decreasing delivery times or throughput)
• Predictability for future performance (narrowing or widening standard deviation in delivery

outcomes)
The analyst may consider questions such as:

• Is the cycle time consistent across iterations?
• Is cycle time increasing or decreasing?
• Do the cycle time and lead time performance (Voice of the Process) meet the business need (Voice

of Customer)?
• How predictable is the release cycle? Can we reliably estimate future performance?
• What are the root causes for process outliers?
• Are process improvements effective?
• Are any corrective actions needed to bring performance in line with expectations?

Shorter cycle times can indicate effective delivery flow and quicker time to market. Longer cycle times are
often correlated to the number of items for Work in Progress (WIP). Consider moderating attributes of the
assigned work and resources in order to achieve predictable performance. Tuning small batch sizes for WIP
is a common approach used to achieve a consistent delivery cadence.
Teams should implement improvements to bring capability and performance in alignment with the business
need. Lead times and release frequency can be optimized by managing backlog depth to reduce latency of
critical capabilities or applying additional resources to work concurrently.

Decision Criteria
Investigate outliers for cause of variations. Review each outlier that is more than 10% from the average cycle
time.

Additional Information

Additional Analysis
Guidance

Under consistent conditions, cycle time and lead time can be used as measures of team capability and
throughput that can be used in lieu of traditional size-based productivity measures (such as lines of code /
hour). Reductions in cycle time and lead time measures can indicate faster delivery to the customer, which
yields additional potential business benefits such as:
• Increased productivity
• Identification of innovation opportunities
• Higher customer satisfaction and employee satisfaction

Implementation
Considerations

Cycle time and lead time measures can be automatically collected and analyzed by many common tool suites.
Refer to Data Collection Procedure for details.

Additional Specification Information

Information Category Process Performance – Process Effectiveness

Measurable Concept Process Efficiency - Speed

Relevant Entities Features, Stories; Defects

Attributes Time stamps for process state transitions (start, end)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 46

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Data Collection
Procedure

Cycle Time and/or Lead Time indicators are often generated directly from software project management
tools, such as:
• VersionOne = Select reports -> Work item Cycle (ensure start cycle is In Progress)
• Jira (Control Charts for selected measures)

= Reports -> Control Chart -> Refine Report -> Choose Cycle time status
Data for these indicators can also be collected manually:
• Excel = Subtract Start Date from End Date and average across all Features or Stories

Data Analysis
Procedure

Data is analyzed at the end of each iteration by the team during the iteration review and considered during the
planning session for the follow-on iteration. Performance trends of team or organizational capability may be
analyzed at periodic intervals (e.g., quarterly) by the program to assess systemic issues and identify
improvement actions to align performance with business objectives.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 47

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.6 DEFECT DETECTION (TEAM, PRODUCT, OR ENTERPRISE MEASURE)
Measure Introduction

Description

Programs strive to deliver products of acceptable quality for use by internal or external customers, and to
manage the extent of defects and rework that could inhibit the effective use of these products in operations.
Acceptable quality can often be a tradeoff against other attributes, such as speed, cost, and time to market.
Quality objectives may vary by application domain and the business goals of the enterprise, but the objective
is generally to minimize the quantity of defects detected after release (escaped) or conversely, to maximize
the defects detected during development prior to product release (contained). This may be accomplished
through defect detection processes such as effective peer reviews, automated testing throughout
development, and other verification and testing approaches.

Relevant Terminology Defect terminology is defined in Section 3: Ontology and Definitions and in Figure 3: Defect Terminology.

Information Need and Measure Description

Information Need

How many defects were contained (discovered) prior to internal release?
How many defects were released (escaped) to an internal customer (e.g., Integration and Test, Formal Test)
or released (escaped) to an external customer (e.g., end users)?
For each major release, how many defects were detected in internal development (contained, saves)?
What is the ratio of escaped defects (internal and external) to all defects?
Does committed work (stories, features, capabilities) work as expected?

Base Measure 1 Contained Defects (integer scale)

Base Measure 2 Internally Escaped Defects (integer scale)

Base Measure 3 Externally Escaped Defects (integer scale)

Derived Measure 1 Total Defects = Contained Defects + Internally Escaped Defects + Externally Escaped Defects

Derived Measure 2 Internal Defect Escape Ratio = Internally Escaped Defects / Total Defects

Derived Measure 3 External Defect Escape Ratio = Externally Escaped Defects / Total Defects

Derived Measure 2 Total Defect Escape Ratio = (Internally Escaped Defects + Externally Escaped Defects) / Total Defects

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 48

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Description
and Sample

The concept of categorizing defects as either contained or escaped is key to this measure and others (e.g.,
Defect Containment). As shown in Figure 3 on page 7, and repeated below in Figure 20, all defects detected
before the release (during development, noted in the blue box) are Contained Defects. All defects detected
after release in internal or external operations (noted in the beige and orange boxes) are Escaped Defects.

Figure 20: Defect Terminology

The Defect Escapes table (Table 6) is used to show Contained and Escaped Defects for each release along
with the Defect Escape ratio. This measures the quality of the completed product based on the number of
defects detected before release (Contained Defects) and after release (Escaped Defects). It also monitors the
effectiveness of defect detection processes and verification activities performed during development to
detected defects prior to release. Note: while only major releases (e.g., 1.0, 2.0, 3.0) are external releases, it is
possible to detect external escapes attributed to minor releases after investigation and assignment of iteration
introduced.

Table 6 Defect Detection by Release

~
Iterations
(defects originated)

Internal
Development Team

SW I&T
SE I&T

DT
Formal Test

Etc.

Internal
(Operations)

Release

External Releases
e.g., to End Users~

Containment
team errors, defects

Released - Delivered
defects, escapes

Released - Deployed (Fielded)
defects, escapes

External (Operations)
Customer

Candidate
Release

SW I&T
SE I&T

DT
Formal Test

Etc.

Internal Releases
e.g.,

Integration and Test
Formal Test

Operational
Release

Operational EnvironmentOperationally Relevant Environment

Factory

Development/Integration and Production Representative Environments

In
te

rn
al

ly

Es
ca

pe
d

Ex
te

rn
al

ly

Es
ca

pe
d

Release 1.0 48 9 3 60 15% 5% 20%
Release 1.1 55 5 1 61 8% 2% 10%
Release 1.2 31 4 0 35 11% 0% 11%
Release 2.0 64 5 2 71 7% 3% 10%
Release 2.1 55 8 0 63 13% 0% 13%
Release 2.2 48 4 0 52 8% 0% 8%
Release 2.3 31 3 0 34 9% 0% 9%
Release 3.0 20 1 0 21 5% 0% 5%
Cumulative 352 39 6 397 10% 2% 11%

To
ta

l E
sc

ap
e

Ra
tio

Ex
er

na
l E

sc
ap

e
Ra

tio

Defects
Escaped

Escape Ratio

In
te

rn
al

 E
sc

ap
e

Ra
tio

Release Co
nt

ai
ne

d

To
ta

l D
ef

ec
ts

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 49

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In the example above, Release 1.0 had a ratio of 20% of total escaped defects, with 5% of recorded defects
detected after release to the customer. This gradually improved over time to a ratio of 5% on Release 3.0.
This was due to a more stable set of requirements, improved test coverage and a more mature product. The
Defect Escape Ratio was higher for Release 1.0 because the team decided to implement the more difficult
functionality in the first release. Sixty-four defects were discovered in Release 2.0 due to a significant
product update. Only 2% of defects were detected externally by the customer.
An alternative way to apply the concept of contained and escaped is to implement the Defect Containment
measure. Instead of identifying defects as contained or escaped in relation to the release to an internal or
external customer, they would be identified in relationship to iterations. Defects detected in the iteration in
which they were inserted (originated) are contained and those detected in later iterations are escaped. Defect
counts could be shown in a table as in Table 7 below, identifying which iteration the defects were originated
and which iteration the defects were discovered. If this information is unknown, those defects could be
tracked separately as Unknown. If legacy defects are detected that were inherited (not originated) by the
development team, those could be tracked as Legacy. In a manner similar to the Defect Escape Ratio,
various ratios could be determined (e.g., ratio of defects discovered one iteration after they were inserted).
See the PSM core framework for more information on Defect Containment.

Table 7: Defect Resolution Lag Time

For this data, 38% of the defects were resolved in the same iteration they were detected. This is less than the
organizational goal of 80%. Another 21% were detected in the next release. 41% of defects took at least two
iterations to detect, which indicates that the assessment of the iterations needs to be improved, possibly with
increased automated test. Some of these escaped defects were not found until after internal release, once an
end-to-end test was performed.

Analysis
Model

The Defect Escape Ratio is analyzed to determine the quality of a given release and whether the team is
improving over time. The Defect Escape Ratio should be getting smaller over time. The defect containment
indicator can be used to evaluate the adequacy and completeness of the testing process and the sufficiency of
the automated test.
The enterprise may analyze defect escape ratio across multiple programs, especially external escapes, to
evaluate those programs that are successfully handling defects.

Defect Resolution Lag Time
As of 19 Dec 19

Defects 1 2 3 4 5 6

Unknown 0
Legacy 0

1 82 29 2 19 17 4 11
2 123 27 71 6 7 12
3 282 122 60 29 71 Blank 0%
4 112 16 2 94 >1 Iteration 41%
5 7 5 2 1 Iteration 21%
6 54 54 Same Iteration 38%

Total 29 29 212 99 47 244
660

(Iteration)

D
ef

ec
t D

is
co

ve
re

d
(It

er
at

io
n)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 50

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Decision Criteria
Is the Defect Escape ratio acceptable? Is the ratio getting better over time?
Are at least 80% of defects detected in the iteration where they were originated?
Are at least 98% of defects detected before external release?

Additional Information

Additional Analysis
Guidance

These tables could be separated by priority (e.g., priorities 1-3 and priority 1) or other attributes. This
measure may be used in conjunction with other quality measures including the Defect Density, Defect
Resolution, and Rework measures. By looking at both internal and external escapes, the team can determine
where improvement actions are needed.
A project may intentionally decide to defer defects and add them to the backlog for consideration for
resolution in a later iteration or release. These deferred defects may be tagged and tracked separately.

Implementation
Considerations

Defects in the problem reporting tool must be discernable whether they were detected before (contained) or
after (escaped) the release to an internal or external customer. A parameter or a review of the dates could be
used to determine if defects are contained or escaped.

Additional Specification Information

Information Category Product Quality

Measurable Concept Functional Correctness

Relevant Entities Defects

Attributes Project activity or iteration where defects are detected (e.g., development, internal release, external release).

Data Collection
Procedure

Defect data is recorded in the problem reporting tool as defects are detected.
Each defect must be categorized as contained or escaped by assigning a parameter in the tool or by the
iteration or date detected.

Data Analysis
Procedure

Defect counts and ratios are analyzed at the end of each major release to determine status and progress over
time.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 51

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.7 DEFECT RESOLUTION (TEAM OR PRODUCT MEASURE)
Measure Introduction

Description
Defect Resolution refers to the process of correcting defects that are detected in the system. It is used in
conjunction with the Defect Detection measures to ensure that critical defects are resolved in an efficient
manner and do not result in inherent quality problems.

Relevant Terminology
The terms defects (team errors), iterations, containment, escapes, and releases is defined in Section 3:
Ontology and Definitions and in Figure 3: Defect Terminology. These terms are also used in the
measurement specification for Defect Detection.

Information Need and Measure Description

Information Need

• When are detected defects resolved? Are high priority defects resolved prior to release?
• How many iterations does it take to resolve defects? (aging)
• Which defect types have the greatest impact?
• Are certain defects taking longer to resolve than others?
• How effective was the defect resolution process?

Base Measure 1 Defects detected, per iteration (integer scale)

Base Measure 2 Defects resolved, per iteration (integer scale)

Base Measure 3 Iterations to Resolve (# of iterations between detection and resolution) (integer scale)

Derived Measure 0…n
Resolved 0...n Iteration = the number of defects that are resolved 0..n iterations after being detected
Note: Defects resolved in iteration 0, are contained defects.

Indicator Specification

Indicator Description
and Sample

Figure 21: Defects Detected versus Resolved

Figure 21 shows that for Iteration 1, not all the defects discovered in Iteration 1 were resolved in Iteration 1.
These defects were then deferred, put on the product backlog, prioritized, and planned to be resolved in
upcoming iterations. For Iterations 2 and 3, more defects were resolved than detected, meaning that defects
discovered from previous iterations were resolved, thus reducing the product backlog.

59 61

35

70
63

52
48

66

37

68
61

56

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

N
um

be
r

of
 D

ef
ec

ts

Iteration

Defects Detected vs. Defects Resolved

Defects Detected Defects Resolved

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 52

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 22 shows the cumulative number of defects detected and resolved. In Figure 21 and Figure 22,
Iteration 6 was planned to address defects vs. adding new features and capabilities.

Figure 22: Cumulative Defects Detected vs. Cumulative Defects Resolved

An issue that is often evaluated is how long it takes to resolve discovered defects. In a simplistic case, one
can look at how many iterations it takes to resolve the defect. This is shown as a simple bar chart in Figure 23
as Defect Resolution Lag Time. In this example, the defects that took 4 and 5 iterations to fix were lower
priority defects dealing with minor changes to screen displays and software documentation.

Figure 23: Defect Resolution Lag Time

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

N
um

be
r

of
 D

ef
ec

ts

Iteration

Cumulative Defects Detected vs.
Cumulated Defects Resolved

Cumulative Defects Detected Cumulative Defects Resolved

252

138
150

96

15 8 4
0

50

100

150

200

250

300

0 1 2 3 4 5 Not Resolved

De
fe

ct
s

Number of Iterations to Resolve

Defect Resolution Lag Time

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 53

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Preferably, a defect would be resolved in the same iteration as it was discovered (the green series of diagonal
cells in Table 8 below). All cells to the right of this diagonal represent escaped defects across iterations.
Filtering can be applied for the most critical or highest priority defects. Defects that are not resolved after
multiple iterations may represent a risk to the inherent quality of the product, may represent an issue with the
defect resolution process, or may indicate lower priority defects that have not been prioritized for
implementation. Analysis of the Defect Resolution Lag Time measure should focus on the high priority
defects and ensure they are being resolved in a timely matter.

Table 8: Defect Resolution Lag Time

Analysis
Model

Figure 21, Defects Detected vs. Defects Resolved, shows the difference/delta between defects discovered and
defects resolved, by iteration.
The Cumulative Defects Detected vs. Resolved indicator can be used in conjunction with the Feature or
Capability Backlog measure. When checked cumulatively, if the number of defects discovered is greater than
the number of defects resolved, the backlog is growing. If the number of defects discovered is less than the
number of defects resolved, the backlog is getting smaller.

Decision Criteria

In Figure 21, for each defect that does not get resolved in the same iteration as it is discovered, the defect and
its priority shall be considered during the planning session for the follow-on iteration.
In Figure 22, when the difference/gap between cumulative defects discovered and cumulative defects
resolved exceeds 20% of the cumulative defects discovered, the team shall consider having an iteration
specifically designed to resolve the outstanding defects.
In Figure 23 and Table 8, defects with Priority 1 and 2should have a defect resolution lag time not greater
than 1 iteration. If not, the defect shall be considered for resolution in the next iteration, with customer
approval of this action. Priority 3 through 5 defects may be deferred until later iterations, based on customer
priorities.
In Figure 23 and Table 8, most Priority 1 and 2 defects should be resolved prior to release (e.g., a condition
of release). Some may be deferred to a later release, with customer agreement. Priority 3 through 5 defects
not resolved may be released with customer approval and have a customer approved work around.

Defect Resolution Lag Time
As of 19 Dec 19

1 2 3 4 5 6 Not Resolved
1 59 48 11
2 61 55 6
3 35 31 4 Blank 0%
4 70 64 6 >1 Iteration 0%
5 63 55 8 1 Iteration 10%
6 52 48 4 Same Iteration 89%

Total 340 48 66 37 68 61 56 4

Defect Resolved (Iteration)

De
fe

ct
 D

et
ec

te
d

(It
er

at
io

n)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 54

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Information

Additional Analysis
Guidance

Considering the nature of agile development, a defect lower in severity and priority in the product backlog
may not be resolved immediately but, be deferred to be resolved in a later iteration. To account for this
planned delay, the Defect Resolution Lag Time could be derived from the Iteration the defect was resolved to
the Iteration the defect was planned to be resolved (instead of Iteration the defect was detected).
The derived measure for Defect Resolution Lag Time listed above is measured for defects that were resolved.
The lag time for open, unresolved defects would be calculated by the Current Iteration less the Iteration the
defect was detected.
More advanced analysis may evaluate (new) defect insertions during defect resolution, or defects resolutions
that failed. Recidivism rates may be an important customer concern.

Implementation
Considerations

Counting methods need to be defined to determine:
• What constitutes/does not constitute a defect

• E.g., peer review findings may be considered errors and not considered internal defects
• E.g., an internal error that is sent back to the originating team and results in rework, may be

considered a defect
• When defects will/will not be counted (e.g., upon hand-off to another team/3rd party)
• Internal defects vs. external defects (e.g., defects discovered by the developer, by the customer in an

operationally representative environment, or by the customer in operations)
Determining a value for the Iteration the defect was detected and the Iteration the defect was resolved may be
tool dependent.
As an alternative view, these measures and indicators may be constructed using only Priority 1-3 defects that
affect functional performance.
Some iterations may consist of only defects resolutions. Keep this contextual information in mind when it
comes to analyzing the data.

Additional Specification Information

Information Category Product Quality

Measurable Concept Functional Correctness

Relevant Entities Defects

Attributes
Iteration Defect was Detected
Iteration Defect was Resolved
Defect Priority

Data Collection
Procedure

Data is collected at the end of each iteration by the team lead from the team tracking tool.

Data Analysis
Procedure

Iteration the defect was detected and Iteration the defect was resolved are discussed during the defect
tracking and defect resolution meetings. Data is analyzed at the end of each iteration by the team during the
iteration retrospective meeting and considered during the planning session for the follow-on iteration.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 55

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.8 MEAN TIME TO RESTORE (MTTR)/ MEAN TIME TO DETECT (MTTD)
(Product or Enterprise Measure)

Measure Introduction

Description

In an operational environment, continuity of deployed services is fundamental to the delivery of user value.
MTTR is essential for systems in which operational availability is critical. This includes both critical
embedded systems as well as those systems focused on the delivery of software services.
Operations can be impacted by planned or unplanned outages. Operational service incidents are typically
recorded in a trouble ticket which is used to track the incident to closure and restoration of service. Each
trouble ticket has an associated restoration time. Sometimes there may be an alternative or workaround that
enables the service to continue in the field, such as redundant paths or resources, even if in a degraded mode.
Some repairs must be returned to the factory for correction and redeployment.
The enterprise may collect the average time to detect a service-impacting issue (Mean Time to Detect) and
the average restoration time (Mean Time to Restore). This provides measures of operational effectiveness
for maintaining service continuity, across all tickets, or classes of tickets. A summary of these concepts is
depicted visually in Figure 2, Measurement Context Diagram.
MTTR, MTTD and other operational measures of service continuity can be applied in each of many potential
stakeholder environments including the development/integration environment(s), production representative
environment, or operationally relevant environment, or the operational environment. The enterprise generally
focuses on actual measures from the operational environment. The product team may also focus on ensuring
MTTD/MTTR objectives will be met as the system is developed and sustained.

Relevant Terminology

Mean Time to
Detect (MTTD)

Time required to identify an interruption to service delivery. MTTD measures how
long it takes the operations team to detect that an incident has occurred which
affects delivery of operational services.

Mean Time to
Restore (MTTR)

Time required to restore service after an outage occurs. MTTR measures how long
it takes the operations team to restore the system to an operational state, either
through a rollback, restart, fix in operations, return to the factory for repair, or
another action. Sometimes synonymous with Mean Time to Recover, but with a
focus on restoration of operations.

Information Need and Measure Description

Information Need

What is the reliability and availability of operational capabilities?
How long does it generally take to restore service when a service incident occurs?
How quickly can we recover from failures that impact the system in operations (e.g., impacts service
reliability or availability), or the software in development or test?
(time to restore the build or the service to a previous, known good state.)

Base Measure 1 Failure Occurrence Time (timestamp)

Base Measure 2 Failure Detection Time (timestamp)

Base Measure 3 Service Restoration Time (timestamp)

Derived Measure 1
Time to Detect = (Failure Detection Time) – (Failure Occurrence Time)
(units for elapsed time may vary; seconds, minutes, hours, days)

Derived Measure 2 MTTD = ∑ (Time to Detect) / N (rolling average Time to Detect, based on N previous failures)

Derived Measure 3 Time to Restore = (Service Restoration Time) – (Failure Occurrence Time)
(units for elapsed time may vary; seconds, minutes, hours, days)

Derived Measure 4 MTTR = ∑(Time to Restore) / N (rolling average Time to Restore, based on N previous failures)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 56

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Specification

Indicator Description
and Sample

When practicing CID, a key concern is speed: to deliver software rapidly and frequently. However, quality
should be maintained. In particular, when practicing Continuous Deployment into operations it is important to
be able to quickly recover when a new release/deployment introduces a failure in this live environment.
MTTD and MTTR indicators can be represented in multiple ways (e.g., graphical, tabular). In Figure 24, three
measures are plotted for each operational outage: Time to Detect, Time to Repair, and Time to Restore (sum
of detection + repair). A comparison of data across outages indicates general trends, severity, and operational
impacts. A summary of statistical measures (mean, median, standard deviation) for each of detection time,
repair time, and total restoration time is provided in the table below the chart. A rolling average of Mean Time
to Restore (MTTR) is also plotted for the 10 most recent outages.

Figure 24: Operations Outage Summary

In this example, although there are significant variations in individual outage samples (some anomalies are
more complicated to fix than others), in aggregate the MTTR rolling average is holding fairly steady (around 1
hour to restore service). Similarly, the mean and median times for Time to Detect, Time to Repair, and Time
to Restore are consistent despite a large standard deviation. (Table 9)
In the sample indicator, the four short MTTRs are cases where
the system was rolled back to a previous version. The longest
cases are indicative of complex issues that required additional
repair time. The lengthy MTTR in Outage 16 involved an
update to a critical component. The fix/corrective action was
not implemented correctly, which resulted in Outage 17. An
alternative solution was implemented, and the software was
shown to work in the next iteration.
In this example, feedback from the user community indicates outages of greater than 30 minutes can have a
significant impact on Operations, due to reports that are due twice hourly. Missing two consecutive reports
impacts decision making. This example program is considering ways to shorten restore times, such as
implementing automated roll-back capabilities where any new deployment/release that introduces a failure can
be rolled back and the previous release rapidly restored. Program personnel are also conducting a Pareto
analysis of outage times by defect type to determine which outage types are most costly, so that resources can
be prioritized on targeted improvement actions.

Table 9: MTTR Statistics

 Detect Repair Restore
Mean 11.56 51.06 62.61
Median 11 51 59
Std Dev 6.31 34.09 33.28

21 17 12 14 17 11
23 20 15 9 11 7 1 6 5 9 4 6

51

6

90

24

79

40 20

54

36

3

99

56
80

7

50

109

93

22

72

23

102

38

96

51

43

74

51

12

110

63

81

13

55

118

97

28

62.80

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Tim
e

(M
in

ut
es

)

Operations Outages

Operations Outage Summary

Detect Repair Restore MTTR Rolling Avg (10)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 57

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Analysis
Model

Data is gathered from service incident tickets and classified or filtered into affinity groupings of interest (e.g.,
priority, type, component, severity, impact, duration, detection method). Trends and root causes are evaluated.
Improvement plans may be defined and implemented with corrective/preventive actions to mitigate the
frequency or impact of future occurrences, as appropriate, relative to business objectives. The effectiveness of
improvement actions should also be measured.
Both MTTD and MTTR need to be evaluated as to whether they meet the business/mission needs in terms of
reliability and availability. Projections and actuals are evaluated against objectives, and trends are analyzed to
project whether required objectives will be met.
A good pipeline should include significant automated testing such that any failure-inducing defects or issues
are detected before deploying into the operational environment.
MTTD and MTTR are measures of failure trends for a set of issues across a range of time, and they
characterize the capability to maintain and rapidly restore operations and operational service. Analysis and
improvement actions can vary based on the situation and trends of performance measures and whether these
are reliable predictors of future performance so improvement actions can be effective. Examples of potential
areas for investigation are summarized in the table below:

Trend MTTD MTTR
Increasing • Ineffective monitoring, detection

processes, tools, training
• Incomplete knowledge of failure

modes

• Increasing complexity of system, software, or
architecture

• Lack of rollback capability or strategy
• Lack of effective redundancy
• Developer changes / inexperience

Steady • Established MTTD met and satisfied
- no further improvement needed

• Predictable capability; does it meet
the business need (Voice of the
Customer)?

• Lack of continuous improvement

• Established MTTR met and satisfied - no
further improvement needed

• Predictable capability; does it meet the business
need (Voice of the Customer)?

• Lack of continuous improvement

Declining • Improved monitoring effectiveness
• Defect prevention initiatives

• Improvements through automation, tools
• Added capability or capacity (redundancy, etc.)

Erratic • Inconsistent monitoring or reporting
processes

• Unstable processes
• Immature system
• Ineffective process improvement

Decision Criteria

After deployment, when MTTR or MTTD is above mission or business objectives, a decision as to whether
the system should be rolled back to a previous version may be considered. If the decision is not to roll-back,
the user may create a high priority change request to resolve the issue causing the high MTTR. Increasing
trends in MTTR or MTTD measures, may also lead to the creation of new defects or stories to improve
performance, or the need to evaluate and improve the development/test processes. This is especially important
when a safety critical or mission critical failure occurs.
When additional defects are introduced after improvements are made, special attention should be applied to
the resolution process.
During development and test, for any MTTD or MTTR that is more than 10% above the objective or mean,
investigate the root cause(s) and decide if additional improvements or testing is required. Trends over time
should be improving (getting smaller) as additional functionality is added and as the system nears deployment.
Regular occurrences above the objective may mean that the system is not mature enough for operations, and
deployment may need to be delayed. For trends that are increasing above the objective or mean, additional
focus or process improvements may be required.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 58

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Information

Additional Analysis
Guidance

MTTR is an essential measure for systems in which operational availability (Ao) is critical, with a focus on
safety-critical and mission-critical failures.
MTTR is also paramount when practicing full continuous deployment into Operations: in this case
Operations is an operational environment supporting live operations/missions and thus the system must
maintain high reliability and availability. However, even in testing environment, a failure means that
integration or test activities are impacted (and possibly deployment which may lead to cost/schedule
overruns).
Additional analyses of MTTD/MTTR measures can be utilized to determine appropriate actions to improve
availability and rapid recovery from operational issues. Examples include statistical analysis methods,
profiles of defect distribution or characteristics, Pareto charts, root cause analysis, or other quality
management tools.

Implementation
Considerations

Measuring individual failures and restorations should be automated as much as possible, based on
timestamps in logs or other automated data collection mechanism.

Additional Specification Information

Information Category Process Performance

Measurable Concept
Process Efficiency – Speed
Supportability – Maintainability – Dependability – Reliability

Relevant Entities Service incidents

Attributes Time of outage, detection, and restoration; defect priority and reason code; affected elements

Data Collection
Procedure

Date/time is collected at the start of each failure or service outage, and at the time of operations or service
restoration. The delta between these is the individual outage TTR. These are collected to calculate a historical
mean MTTR.

Data Analysis
Procedure

Data is analyzed periodically during development and test, and trends are evaluated. During operations, data
is analyzed when safety or mission critical failures occur, as well as periodically.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 59

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.9 RELEASE (OR DEPLOYMENT) FREQUENCY (PRODUCT OF ENTERPRISE MEASURE)

Measure Introduction

Description

As described in Overarching Principles, products are typically planned and developed iteratively (e.g.,
capabilities, features, stories, tasks) into a set of internal releases, candidate releases, and deployed product
releases. This is represented conceptually in Figure 25.

Figure 25: Iterative Development

The speed and frequency at which products are released are crucial in providing useful capability to users as
rapidly as possible. The scheduling, duration, and frequency of releases can vary widely (e.g., months,
weeks, days, or on demand) based on domain or business need. Products may be iteratively released on a
predictable fixed cadence, or on demand as needed. The time and effort to develop candidate product releases
and transition them to deployed external product releases are primary measures of efficiency in making
features/capabilities available to users, as depicted in Figure 26.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 60

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 26: Product Iterative Releases (Conceptual)

Relevant Terminology

MVP Minimum Viable Product
MVCR Minimum Viable Capability Release
NVP Next Viable Product
Release Internal Release; Candidate Release (External Relase); Operational Release

(Deployment Release)

Refer to glossary for definitions.

Information Need and Measure Description

Information Need

How long does it take to deploy an identified feature/capability? [Product]
What is the cadence or frequency for product release or deployment? [Product, Enterprise]
How long does it take to release a minimum viable product? [Product, Enterprise]
How much effort/cost/time is needed to develop new products and transition them to release? [Product,
Enterprise]

Base Measure 1
Release Start Date (datestamp)
(release, candidate release, or operational release)

Base Measure 2
Release End Date (datestamp)
(release, candidate release, or operational release)

Base Measure 3
Effort Hours to generate a release (integer)
(internal release candidate or external deployed release)

Base Measure 4 # of Releases (for a specified data range)

Derived Measure 1

Release Duration = (Release End Date) – (Release Start Date)
Note: release durations may be tracked for features/capabilities at various stages of maturity

• Time to Minimal Viable Product (MVP)
• Time to Minimal Viable Capability Release (MVCR)
• Time to Next Viable Product (NVPn)

Derived Measure 2 Release Frequency = (# of Releases) / date range (e.g., days, weeks, months, quarters, years)

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 61

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Derived Measure 3 Average Release Duration = ∑ (Release Duration) / (# of Releases)
Note: weighting can be used to emphasize the most recent releases.

Derived Measure 4 Average Release Transition Time = ∑ (Release Transition Time) / (# of Releases)

Indicator Specification

Indicator Description
and Sample

In this example, (Table 11) a commercial software company deployed a new product (Tango) to the market
in October 2018 (MVP release), with a business objective to release iterations twice monthly to support
quarterly product capabilities releases. Ten product releases were completed between October 2018 and
March 2019. The table below summarizes, for each release, the start and end dates for each release (from
which duration is calculated), the type of release, and the total labor spent in hours.
Following the higher effort for the initial MVP R2018.01 release, durations of iterations have averaged 18
days. The initial MVP did not meet market needs, however, a Minimum Marketable Product (MMP) was
available two months later in December 2018. After the MMP, the NVP release occurred 90 days later, in
line with the business objective of quarterly releases.
A longer duration for the R2019.01 iteration (25 days) at the end
of 2018 is attributed to staffing reductions due to holiday
vacations. Overall averages for release time and labor across
releases is shown in the Table 10, by calendar year.

Table 11: Release Frequency and Labor Hours

The product team plots each release in the Figure 27 below for a visual comparison of durations (vertical bars
aligned with the left axis) and labor hours invested (red line aligned with the right axis). A rolling average of
the durations for the most recent 3 product releases is calculated and displayed in the dashed line.

Table 10: Product Release Averages

Days to Release 2018 2019
of Releases 5 5
Days to Release (Avg) 25.8 19.4
Labor to Release (Avg) 2402 1671

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 62

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 27: Release Duration for Product Tango

In Figure 28 the marketing department tracks the release frequency for all three of the company’s products at
the enterprise level against the business plan for twice monthly iterative releases.

Figure 28: Product Release Frequency

Analysis
Model

Can we consistently release product baselines at a rate needed to meet demand?
Is the process performance (time and labor) for generating and deploying product releases improving? Does
it take more/less/same amount of time to transition release products to candidate release products or
operational release products?
Not all development organizations are in control of when their internal baselines may be deployed to live
operations. For instance, deployments for military platforms must be certified and coordinated with the user
community. As shown in Figure 1, additional effort may be needed to prepare and transition candidate
releases to operationally representative environments. This may require a separate set of release measures to
manage and optimize the rapid delivery of capabilities to end users. This preparation and transition effort
may increase significantly as the baseline grows. Not only must the new capability be verified, so must prior
functionality be verified through regression testing. If done manually, the additional effort for testing and
release can scale at a rate incompatible with maintaining product release timelines.

64

14
21

16 14

25

15 16
22

19

0

1000

2000

3000

4000

5000

6000

7000

0

10

20

30

40

50

60

70

10/23/2018 11/5/2018 11/26/2018 12/5/2018 12/17/2018 1/11/2019 1/26/2019 2/11/2019 3/5/2019 3/16/2019

8/20/2018 10/22/2018 11/5/2018 11/19/2018 12/3/2018 12/17/2018 1/11/2019 1/26/2019 2/11/2019 2/25/2019

R2018.01 R2018.02 R2018.03 R2018.04 R2018.05 R2019.01 R2019.02 R2019.03 R2019.04 R2019.05

La
bo

r H
ou

rs

Du
ra

tio
n

(D
ay

s)

Software Product Releases

Release Duration - Tango
(2018-2019)

Duration Labor Hours 3

0

1

2

3

4

5

Aug Sep Oct Nov Dec Jan Feb Mar

2018 2019

of

 R
el

ea
se

s

Product Release Frequency

Tango Foxtrot Salsa

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 63

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Automation can help improve build, testing, and release efficiency to maintain a consistent release transition
cadence.
The time to build and create product releases is directly related to the quantity and size of design and
implementation features. Smaller batch sizes enable releasing products more quickly. Efficiency of the
deployment and release process further accelerates the speed at which products can be released to the
customer.
Releases are typically built by automated build/test automation frequently on the baseline. Releases are
typically built every day or upon every merge or end of a sprint. The frequency of failures for releases
impacts confidence in the software baseline. Ideally over time, releases can be produced more efficiently by
replacing manual steps with automation.

Decision Criteria

• If the effort to transition release products to candidate releases or operational releases is increasing
steadily beyond performance goals, consider approaches such as automation or reducing batch size to
increase release frequency and speed the delivery of capability to users.

• Once stabilized, action may be needed if the quality of deployed products declines or if the team is
unable to sustain release timelines.

• Does adding features/capabilities result in increased cost to create a candidate release or operational
release?

Additional Information

Additional Analysis
Guidance

Release frequency (how often?) have close dependencies with Lead Time and Cycle Time (how fast?)
measures. All these measures rely on the batch size of the capability or stories being released, and the
efficiency of the pipeline in generating and provisioning products. Automation of the build/test elements has
a profound impact on all these measures. Consistency of staffing and team composition can also impact the
team’s ability to release their capabilities as needed. Generally faster release cycles on a predictable cadence
are desirable to quickly deliver value to users and obtain feedback.
There can be a tension between speed and quality tradeoffs. An over-emphasis on speed can be at the
expense of product quality. There is often a ‘sweet
spot’ tradeoff between speed and quality that delivers a
best value solution based on project objectives. Quality
needs to be monitored, in addition to speed, to ensure
that these measures are appropriately balanced.
Additional statistical measures can be generated (e.g., mean, median, standard deviation, quartiles) to
determine the aggregate performance, repeatability, and consistency of product release timelines.

Implementation
Considerations

Applying Build/Test Automation to generate releases as early in the program as possible is recommended.
Successfully generating releases as early in the release cycle should be a team priority.
Integrity of the product baseline can be ensured by enforcing quality criteria for baseline merges to proceed
successfully through the build/test automation pipeline.

Additional Specification Information

Information Category Process Performance

Measurable Concept Process Efficiency – Speed

Relevant Entities Releases, Effort

Attributes Quantity, Labor Hours

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 64

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Data Collection
Procedure

Date/time is collected at the start and end of each iteration or release (iteration or deliverable, internal or
external), typically obtained directly from automated tools. Each release must meet entry and exit criteria to
be considered complete. Cycle time is calculated as the difference between release start time and release end
time. Release frequency is calculated as the number of releases completed per unit time (e.g., day, week,
month, year).

Data Analysis
Procedure

 Measures of the release process are analyzed at end of each release for performance within acceptable
bounds, with corrective actions or improvements taken as necessary.

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 65

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.10 TEAM VELOCITY (TEAM MEASURE)

Measure Introduction

Description

Velocity is a measure of team performance and the amount of work that is completed in an iteration, typically
a count of completed story points or equivalent. Velocity calculations can be used to estimate the amount of
work that can be accomplished by the team in future iterations and when planned deliveries will be
completed.

Relevant Terminology

Velocity The average amount of work a team completes in an iteration or release. Used for
planning and measuring team performance.

Acceleration Change in velocity across iterations.

Information Need and Measure Description

Information Need
Is the team performing as expected? Does the team consistently meet the anticipated velocity? How much
work can be accomplished by the team in a future iteration?

Base Measure 1 Story Points Completed (integer scale)

Base Measure 2 Iterations Completed (integer scale)

Derived Measure 1 Average Velocity = Story Points Completed / Iterations Completed

Derived Measure 2

Team Acceleration = (Current iteration Velocity – Reference Comparison iteration Velocity) / Reference
Comparison iteration Velocity
Note: the Reference Comparison iteration Velocity may be calculated as the Average Velocity across all
teams, or by setting a goal for all teams to meet.

Derived Measure 3 Average Acceleration = Sum (Team Acceleration 1 …Team Acceleration N) / N

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 66

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Indicator Specification

Indicator Description
and Sample

In Figure 29, Story Points Completed is graphed for each iteration [blue bars]. Average Velocity is then
graphed as of each iteration [red line] based on last 4 iterations (4-iteration rolling average).

Figure 29: Team Velocity

Iteration 4 had a significant drop in velocity, followed by a large increase in iteration 5. This was due to
several stories in iteration 4 that had defects.
These defects were resolved in iteration 5,
along with the completion of the iteration 5
assigned stories. Velocity improved and
became more consistent after iteration 5, as
the team became more experienced. This team
established a consistent velocity after iteration
6.
Changes in velocity across iterations can be
analyzed in more detail using acceleration
measures. For instance, in Table 12, Teams 1,
2 and 5 show significant positive acceleration,
which is typical for early iterations. Team 3
shows a dramatic drop, which should be
analyzed to determine if there is a problem.
Team 4 shows no variation, which may
suggest a reporting anomaly.

Table 12: Sample Acceleration

 Iteration 1
Points

Iteration 2
Points Acceleration

Team 1 10 12 20%
Team 2 8 9 13%
Team 3 14 8 -43%
Team 4 12 12 0%
Team 5 8 11 38%
Overall 5.6%
Sample Calculation
Team 1 Acceleration = (12-10) / 10 = 0.2
(20% positive acceleration)

Analysis
Model

Do we have a consistent velocity? Why is the velocity changing over time? Based on past performance, is
the average team velocity adequate to complete defined features allocated to this team? Variations may
occur due to vacations, sick leave, changes to team size/composition, or implementation difficulties.

Decision Criteria Velocity of +/- 10% should result in analysis at iteration review.

13 15 13 8 22 15 17 17 16 18

13.0
14.0 13.7

12.3
14.5 14.5

15.5
17.8

16.3 17.0

0

5

10

15

20

25

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

Team Velocity

Story Points Completed Velocity

Sample Calculation
Velocity for Iteration 4
Velocity = (13+15+13+8) / 4 = 12.3

PSM Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 67

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Information

Additional Analysis
Guidance

Use this with the Committed Backlog and story point-to-feature ratio to ensure project will release identified
features as scheduled (e.g., will velocity for remaining iterations be sufficient to complete committed
features)?
Will current average velocity be adequate to complete committed features by end of project? This assumes
an ability to estimate average number of story points per feature (and then capability), based on performance.
This measure can be used with Reference Comparison iteration Velocity for normalization.
Acceleration can be tracked over time to develop predictive trends in performance. For example,
performance tends to increase slowly in the first few iterations, then increase sharply, then plateau.
Knowledge of long-term acceleration trends can enhance planning accuracy. Comparing individual team
acceleration trends can highlight teams that have problems or that should serve as exemplars. Tracking
program level acceleration trends is useful for bidding future work.

Implementation
Considerations

In general, velocity is specific to a team and cannot be aggregated across teams to the project level.
If velocity is normalized it can be used at the product or enterprise level.
Usually, velocity should become more accurate and reliable over time as the team becomes more
experienced, processes are established, data is regularly produced and reviewed, and the team gets better at
estimating.
Since story points may vary across teams, variations in velocity can be compared in percentage terms
(positive or negative acceleration relative to prior reference iterations). This gives the program a way of
determining which teams are struggling without having to normalize velocities.

Additional Specification Information

Information Category Process Performance

Measurable Concept Process Efficiency - Speed

Relevant Entities Features

Attributes Stories, Story Points (estimated size)

Data Collection
Procedure

Data is collected at the end of each iteration by the team lead from the team tracking tool. Story Points must
be tested and satisfy the completion criteria, with no open defects to be counted as completed.

Data Analysis
Procedure

Data is analyzed at the end of each iteration by the team during the iteration review and considered during the
planning session for the follow-on iteration.

Continuous Iterative Development
Measurement Framework

Publish Date: 15 June 2020 Version: v1.05 68

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

BIBLIOGRAPHY
Defense Innovation Board (DIB), Software Is Never Done: Refactoring the Acquisition Code for

Competitive Advantage, 2019, Software Acquisition and Practices (SWAP)
Defense Science Board (DSB), Design and Acquisition of Software for Defense Systems, Defense

Science Board (DSB) Task Force on Design and Acquisition of Software for Defense
Systems, 2018

Design and Acquisition of Software for Defense Systems, Defense Science Board (DSB) Task
Force on Design and Acquisition of Software for Defense Systems. (2018, February).
Retrieved from Defense Science Board:
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf

John McGarry (Author), D. C. (2001). Practical Software Measurement: Objective Information
for Decision Makers. Addison-Wesley Professional.

Software Acquisition Pathway Interim Policy and Procedures. (2020, January 3). Retrieved from
Defense Acquisition University: https://aaf.dau.edu/

Software Is Never Done: Refactoring the Acquisition Code for Competitive Advantage. (2019,
May 3). Retrieved from https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCO
MPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF

Vacanti, D. S. (2015). Actionable Agile Metrics for Predictability: An Introduction. Daniel S.
Vacanti, Inc.

	Contents
	List of Figures
	List of Tables
	Executive Summary
	1. Front Material
	1.1 Background
	1.2 Contributors

	2. Major Concepts
	2.1 CID Work Decomposition
	2.2 Measurement Context Diagram
	2.3 Defect Terminology
	2.4 CID Process

	3. Ontology and Definitions
	4. Mapping Data to Measurement Specifications
	5. Measurement Principles
	6. Next Steps
	7. ICM Table
	8. Measurement Specifications
	8.1 Automated Test Coverage (Product or Enterprise Measure)
	8.2 Burndown (Team, Product, or Enterprise Measure)
	8.3 Committed vs Completed (Team, Product, or Enterprise Measure)
	8.4 Cumulative Flow (Team, Product, or Enterprise Measure)
	8.5 Cycle Time/ Lead Time (Team or Product Measure)
	8.6 Defect Detection (Team, Product, or Enterprise Measure)
	8.7 Defect Resolution (Team or Product Measure)
	8.8 Mean Time to Restore (MTTR)/ Mean Time to Detect (MTTD)
	8.9 Release (or Deployment) Frequency (Product of Enterprise Measure)
	8.10 Team Velocity (Team Measure)

	Bibliography

