

Outline	
• Workshop Objectives and Intended Output	
SPE Background	
SPE Measurement Objectives	
SPE Definitions	
SPE Scope	
SPE Measurement Principles	
Issue Categorization	
Recommended SPE Products	
SPE PSM Framework Impacts	
Proposed SPE Activities	
PSM 2	22 Jul 98

Practical Software Measurement

SPE Definitions

- Software Product Engineering: Within a project, Software Product Engineering comprises those software engineering activities used to produce products that meet identified customer needs.
- The Customer: An SPE Customer is any person (as an individual or part of an organization) that interacts with, depends on, or relates to the software products. Customers can be categorized as follows: Users, Developers and Maintainers.
- Software Functionality: [Software] Functionality is the ability of the software system products to meet the needs of the customers as specified in the system requirements.
- Software Quality: [Software] Quality is determined by the degree to which the product functionality is met and how well that functionality meets the customers' expectations at a point in time.

PSM 9

22 .111 98

Practical Software Measurement

SPE Definitions

Users are those individuals that need to interact with, require the services of, or employ the products from the software system to perform their primary job. The category of "users" includes: operational phase users, sponsors, and independent testers. This group of customers interact with the software and/or use other products, such as: user manuals and system outputs.

Developers are those individuals that perform developmental services on the software system during the concept, definition, design, construction, testing and implementation (pre-operational) phases of the software system's life cycle. The category of developers includes anyone associated with the development, such as: program managers, project managers, designers, COTS selectors, system integrators, programmers, development testers, and SQA groups. This group of customers produce the software and/or related products, such as: requirements, specifications, manuals, and test routines.

Maintainers are those individuals that perform sustaining or corrective services on the software system during the operational phase of the software system's life cycle. The category of maintainers includes: operational managers, systems operators, maintenance programmers and other service support agents. This group of customers maintain (or sustain) the software and/or other related products, such as: manuals, SOPs (standard operating procedures), and system logs. . PSM 10

22 Jul 98

Practical Software Measurement

SPE Scope

- All issues, concerns and measures considered during the SPE effort should focus on assessing only product functionality and quality.
- Defined measures should focus on assessing functionality and quality pertaining to a single project. Inter-project comparison is not an objective.
- The SPE effort should investigate and address the issues and concerns from the perspective of three distinct customer categories: the user, the developer and the maintainer.
- Only those issues that fall within the Software Engineering domain should be considered within the SPE effort
- Excluded from consideration are support services and trainingrelated activities and material (provided they have not been stipulated as deliverables).

PSM 11

22 Jul 98

Practical Software Measurement SPE Scope In defining measures that address product functionality and quality, both process artifacts and product deliverables should be subject to measurement. The effort should investigate and incorporate measures that enable the customer to both assess and predict functionality and quality. The effort should investigate and incorporate measures that enable one to assess the beneficial (as well as detrimental) impact on the product. SPE quality measures should include an examination of both internal and external characteristics. The effort should investigate and include (if possible) measures that help to determine the completeness with which user expectations are captured. This includes accuracy in interpreting customer needs and accuracy in recording that interpretation. **PSM 12** 22 Jul 98

'actical !	Software Measureme	nf					
autour	Issue	Fct	Oual	Both	Othe	Out	F/O
	Definition of quality requirements		4		1	1	Dof
	Definition of quality reduirements	1	4		1	1	Def
	Acceptance criteria	2	2	1		2	Def
	Definition of a failure	2	ź		1	î	Def
	Stondard product quality ranges		4	1	2		Dof
	Product Size	2	1		1	2	0.05
	Efficiency of product	3	3			2	2
	Rework	2	3		1		005
	Predictability of attainment of quality objectives	-	5		1	1	Princi
	Adaquaty of documentation [2]	1	4	1			Onal
	Test coverage	+ +	1 4				Sear
	Defect recognition		6			1	Qual
	Safety	1	3	2		-	Qual
	Ease of use	2	3	ĩ			Qual
	Supportability	L î	4	l i			Qual
	Usability (same as ease of use)	2	3			1	Qual
	Quality Flow Through (not used)	~	6	1			Oual
	Reliability	1	3	1		1	Qual
	Maintainability	1	5				Oual
	Product Correctness	2	3	1			Oual
	Readiness to deliver [1] (3F)	1	2	2		1	Oual
	Reusability [2]	1	4		1		Oual
	Traceability [3]	1	4		1		Oual
	Complexity [2]	2	3		2		Oual
	Degree of software reuse	1	3	2			Oual
	Stability of requirements (used in functionality)	2	3	1		1	Oual
	Prediction of defects	1	4			1	Oual
	User satisfaction	2	3	1		1	Oual
	Quality of NDL (COTS & GOTS)	1	5		1		Oual
	Clarity	1	3	1	1		Oual
	Testability	4	1	1			Fct
	completeness	4	1	1			Fct
	Hard vs. soft/fuzzv requirements	1	1	1			Fct
	Conflicting requirements	4	1 1	1	1		Fct
	Requirements understandability	4	2	· · · ·			Ect
	Real-time performance	4				<u> </u>	Fct
	Are evolved requirements what user intended?	4			L .		Fct
	Portability	3	2	<u> </u>			Fct
	Scalability	4	2				Fct
	Security	2	1	l			Fct
	Precision	4	2	2			Fct
	Degree of CO15	1 3	Η Į	2			rct T
	Requirements volatility	1 3	2	+			rct
	MIIK	1 3	1 7	· ·	2		rct
	Fault tolerance	3					Fct
	Conformance to standards	2	2				rct
	Consistency (used in quality)	1 2	2				rct
	Interfaces	2	1	l		1	Fct
	Interoperability	1 2	1	L			10°T

Practical Software Measurement Issue Categorization

Functionality Measurement Category	Quality Measurement Category	Questions Addressed	Measures (lower level measure issues)	
Operational Performance		Given its current functional capabilities, does the software perform adequately?	(real-time performance, security, precision, fault tolerance, MTTR, interfaces, readiness to deliver)	
Operational Adaptability		How easily can we include new technology? How easily can functionality be added?	(portability, scalability, interoperability)	
Requirements Applicability		Are the requirements well-understood? How accurately has that understanding been captured? Are the requirements changing?	(requirements understandability, conflicting requirements, requirements volatility, hard vs. soft requirements)	
Requirements Validity		Is the expected functionality present? Is the software testable and maintainable?	(completeness, testability, customer intent met, readiness to deliver)	
Structural Integrity		Does the software adhere to the documented standards? Do NDI (COTS & GOTS) components possess structural characteristics similar to components of developed software?	(degree of NDI [COTS & GOTS] conformance to standards, readiness to deliver)	
PSM 17				22 Jul 98

ssue Co	uegonza	uon	
Functionality Measurement Category	Quality Measurement Category	Questions Addressed	Measures (Iower level measure issues)
	System Software Functionality	To what extent does the software system as a whole meet functional requirements? How difficult will it be to develop the software?	(correctness, consistency, readiness to deliver)
	Software Component Functionality	To what extent do individual software components contribute to or adversely impact functional quality? Can the NDI (COTS & GOTS) products be relied on?	(test coverage, defect recognition, requirements stability, traceability, defect prediction, NDI [COTS & GOTS] quality)
	User Needs	Does the software meet its intended use? Is the software safe to use? Is the software user friendly?	(safety, ease of use, satisfaction, reliability, adequacy of documentation)
	Developer Needs	Are the current requirements sufficiently well-defined so that development can begin/continue? Is the functionality changing?	(reusability, darity, traceability, complexity degree of SW reuse, reliability, adequacy of documentation)
	Maintainer Needs	How difficult will it be to maintain the software? Will the computer program documentation support maintenance activities? How much rework for development defects is remuired?	(supportability, reusability, traceability, complexity, maintainability, reliability, adequacy of dog mentation)
PSM 18			

Practical Software Measurement Recommended SPE Products

- **Guidebook**: The intent of the Guidebook is similar to the existing PSM Handbook in that it outlines the framework within which product measurement should occur and the philosophy underlying the measures and measurement approach.
- **Tool**: Like the PSM Insight Tool, a similar software product needs to be developed that assists the customer in tailoring a measurement program to his/her specific needs.
- **Expert System**: A second tool that links to the "SPE Insight" tool and guides the customer through one or more interpretation scenarios.
 - Guidance should be interactive
 - Guidance should provide timely assistance in interpreting actual measures, i.e., those related to an actual software development effort.
 - "Expert System" would be invoked through the Insight tool after it has determined the necessary measures.

22 .111 98

PSM 19

Practical Software Measurement SPE PSM Framework Impacts Occurrences SPE Principles 5 SPE Issues/Categories/Questions 8 • Audience change from Manager to Customer 6 Life Cycle change from Development to 5 Development and Maintenance Expanded focus of Product examination 1 to include life cycle artifacts Analysis to include 6 - assessment/prediction concepts - guidance as to what to do or NOT to do to impact product quality or functionality Defined PSM processes and document updates need to 15 include SPE Links to & Conflicts with SYS-ENGR 5 PSM 20 22 Jul 98

