7th Annual Practical Software and Systems Measurement Users’ Group Conference
Keystone, CO
July 16, 2003

Dr. Barry W. Boehm – USC Center for Software Engineering
Workshop Agenda

Day 1 (1:30 AM – 5:00 PM 7/16)
Next-level tutorial
Review of drivers
SE Sizing discussion
Tool demo

Day 2 (8:30 AM – 4:30 PM 7/17)
Action item review from February meeting
Discussion of key driver issues
Data collection form
Data collection lessons learned
Possible data sources
COSYSMO Trade Study
Delphi exercise
USC-CSE Affiliates (34)

- Commercial Industry (15)
 - Daimler Chrysler, Freshwater Partners, Galorath, Group Systems.Com, Hughes, IBM, Cost Xpert Group, Microsoft, Motorola, Price Systems, Rational, Reuters Consulting, Sun, Telcordia, Xerox

- Aerospace Industry (6)
 - BAE, Boeing, Lockheed Martin, Northrop Grumman, Raytheon, SAIC

- Government (8)

- FFRDC’s and Consortia (4)
 - Aerospace, JPL, SEI, SPC

- International (1)
 - Chung-Ang U. (Korea)
COSYSMO Introduction

- Parametric model to estimate system engineering costs
- Includes 4 size & 14 cost drivers
- Covers full system engineering lifecycle
- Developed with USC-CSE Corporate Affiliate and INCOSE participation
Model Differences

COCOMO II
- Software
- Development phases
- 20+ years old
- 200+ calibration points
- 23 Drivers
- Variable granularity
- 3 anchor points
- Size is driven by SLOC

COSYSMO
- Systems Engineering
- Entire Life Cycle
- 2 years old
- ~3 calibration points
- 18 drivers
- Fixed granularity
- No anchor points
- Size is driven by requirements, I/F, etc
CMMI and SE Effort Estimation

From CMMI-SE/SW/IPPD/SS, v1.1

Level 2: Project Planning
SP 1.4 Determine Estimates of Effort and Cost
 – Estimate effort and cost using models and/or historical data

Level 2: Measurement and Analysis
SP 1.2 Specify Measures
 – Estimates of actual measures of effort and cost (e.g., number of person hours)
COSYSMO Operational Concept

- Application factors
 -8 factors
- Team factors
 -6 factors
- Schedule driver

WBS guided by ISO/IEC 15288

Size

Drivers

Effort

Multipliers

Effort

Calibration

Requirements
Interfaces
Scenarios
Algorithms
Volatility Factor

PSM – 7/16/03
COCCOMO-based Parametric Cost Estimating Relationship

\[PM_{NS} = A \cdot (\text{Size})^E \cdot \prod_{i=1}^{n} EM_i \]

Where:
- \(PM_{NS} \) = effort in Person Months (Nominal Schedule)
- \(A \) = constant derived from historical project data
- \(\text{Size} \) = determined by computing the weighted average of the (4) size drivers
- \(E \) = could represent economy/diseconomy of scale, currently equals 1
- \(n \) = number of cost drivers (14)
- \(EM_i \) = effort multiplier for the \(i_{th} \) cost driver. The geometric product results in an overall effort adjustment factor to the nominal effort.
4 Size Drivers

1. Number of System Requirements
2. Number of Major Interfaces
3. Number of Operational Scenarios
4. Number of Critical Algorithms

• Each weighted by complexity, volatility, and degree of reuse
Number of System Requirements
This driver represents the number of requirements for the system-of-interest at a specific level of design. Requirements may be functional, performance, feature, or service-oriented in nature depending on the methodology used for specification. They may also be defined by the customer or contractor. System requirements can typically be quantified by counting the number of applicable “shall’s” or “will’s” in the system or marketing specification. Do not include a requirements expansion ratio – only provide a count for the requirements of the system-of-interest as defined by the system or marketing specification.

<table>
<thead>
<tr>
<th>Easy</th>
<th>Nominal</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Well specified</td>
<td>- Loosely specified</td>
<td>- Poorly specified</td>
</tr>
<tr>
<td>- Traceable to source</td>
<td>- Can be traced to source with some effort</td>
<td>- Hard to trace to source</td>
</tr>
<tr>
<td>- Simple to understand</td>
<td>- Takes some effort to understand</td>
<td>- Hard to understand</td>
</tr>
<tr>
<td>- Little requirements overlap</td>
<td>- Some overlap</td>
<td>- High degree of requirements overlap</td>
</tr>
<tr>
<td>- Familiar</td>
<td>- Generally familiar</td>
<td>- Unfamiliar</td>
</tr>
<tr>
<td>- Good understanding of what’s needed to satisfy and verify requirements</td>
<td>- General understanding of what’s needed to satisfy and verify requirements</td>
<td>- Poor understanding of what’s needed to satisfy and verify requirements</td>
</tr>
</tbody>
</table>
14 Cost Drivers

Application Factors (8)
1. Requirements understanding
2. Architecture complexity
3. Level of service requirements
4. Migration complexity
5. Technology Maturity
6. Documentation Match to Life Cycle Needs
7. # and Diversity of Installations/Platforms
8. # of Recursive Levels in the Design
14 Cost Drivers (cont.)

Team Factors (6)
1. Stakeholder team cohesion
2. Personnel/team capability
3. Personnel experience/continuity
4. Process maturity
5. Multisite coordination
6. Tool support
Raytheon Data Collection Lessons Learned

• SE Labor Accounting Collection and “Binning” are significant efforts
 • Need to separate organizational reporting structure from EIA 632 / ISO/IEC 15288 SE tasks performed
 • Using all “SE Hours” from your SE organization may not be appropriate
 • There may be “SE Hours” from an outside group
 • May need to map from a local, historical SE Labor “Binning” to COSYSMO
 • COSYSMO Prototype has a “Collection Mode” mapping example/vehicle

• SE Sizing (in progress) – 5 Garland projects
 • Requirements and Major Interface counts relatively easy
 • Critical Algorithm and Operational Scenario counts seem more elusive
Welcome to the USC-CSE COSYSMO prototype, version 1.11

We appreciate the sponsorship and continued support of INCOSE and the USC-CSE Industrial Affiliates.

COSYSMO Model hours generated by the "SE Costing Mode" are not yet based upon validated data and are provided only for demonstration/visualization purposes.

The "SE Costing Mode" and "SE Data Collection Mode" examples provided are just that --- only examples that are not related to one another.

Worksheets that appear in the SE Costing Mode only have white banners.
Worksheets that appear in the SE Data Collection Mode only have green banners, and...
Worksheets common to both Modes have blue banners.

Click for SE Costing Mode (Example Only)
Click for SE Data Collection Mode (Example Only)
COSYSMO Table of Contents (TOC)

The TOC is “Home Base”

Conventions:
- Click on the grey buttons to get to the relevant worksheet(s)
- Return back to TOC from the grey button labeled “TOC” in ULH corner of each destination worksheet
- Grey fields mean user can input or potentially change the default values
- Formula worksheets are protected, but no password
- Extensive embedded notes mirroring current COSYSMO descriptions, driver selection criteria, etc.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Executive Cost Summary</td>
<td>Go To</td>
<td></td>
<td>12a.Req (No. of System Requirements)</td>
<td>Go To</td>
</tr>
<tr>
<td>2. WBS and Size Definitions</td>
<td>Go To</td>
<td></td>
<td>12b. IF (No. of Major Interfaces)</td>
<td>Go To</td>
</tr>
<tr>
<td>3. Estimation Assumptions</td>
<td>Go To</td>
<td></td>
<td>12c. ALS (No. of Critical Algorithms)</td>
<td>Go To</td>
</tr>
<tr>
<td>4. Parameters I</td>
<td>Go To</td>
<td></td>
<td>12d. SCN (No. of Operational Scenarios)</td>
<td>Go To</td>
</tr>
<tr>
<td>5. Parameters II</td>
<td>Go To</td>
<td></td>
<td>12e. SM1 (Spare 1)</td>
<td>Go To</td>
</tr>
<tr>
<td>6. Starting Table and Charts</td>
<td>Go To</td>
<td></td>
<td>12f. SP2 (Spare 2)</td>
<td>Go To</td>
</tr>
<tr>
<td>7. Labor Distribution</td>
<td>Go To</td>
<td></td>
<td>12g. SP3 (Spare 3)</td>
<td>Go To</td>
</tr>
<tr>
<td>8a. Application Factors</td>
<td>Go To</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b. Team Factors</td>
<td>Go To</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. COSYSMO Model Computations</td>
<td>Go To</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Model Hours and Staffing per Phase</td>
<td>Go To</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Other Hours (Non-Model Sources of Effort)</td>
<td>Go To</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Rate Cost Drivers - Application

<table>
<thead>
<tr>
<th>COSYSMO Application Factor Description</th>
<th>Identifier</th>
<th>Current Prod. Range</th>
<th>Suggested Prod. Range</th>
<th>VLOW (VL)</th>
<th>LOW (L)</th>
<th>NOM (N)</th>
<th>HIGH (H)</th>
<th>VHIGH (VH)</th>
<th>XHIGH (XH)</th>
<th>Rating Selected</th>
<th>Resulting Multiplier</th>
<th>Application Factor Rating Selection Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Understanding</td>
<td>RQMT</td>
<td>1.73</td>
<td>1.73</td>
<td>1.40</td>
<td>1.20</td>
<td>1.00</td>
<td>0.90</td>
<td>0.81</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>ARCH</td>
<td>1.66</td>
<td>1.66</td>
<td>1.28</td>
<td>1.14</td>
<td>1.00</td>
<td>0.88</td>
<td>0.77</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Level of Service (KPP) Requirements</td>
<td>LSVC</td>
<td>2.50</td>
<td>2.50</td>
<td>0.66</td>
<td>0.83</td>
<td>1.00</td>
<td>1.33</td>
<td>1.65</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Migration Complexity</td>
<td>MIGR</td>
<td>1.50</td>
<td>1.50</td>
<td>~~~</td>
<td>~~~</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>No. and Diversity of Installations/Platforms</td>
<td>INST</td>
<td>1.50</td>
<td>1.50</td>
<td>~~~</td>
<td>~~~</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>No. of Recursive Levels in the Design</td>
<td>RECU</td>
<td>1.50</td>
<td>1.50</td>
<td>0.82</td>
<td>0.91</td>
<td>1.00</td>
<td>1.12</td>
<td>1.23</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Documentation to Match Lifecycle Needs</td>
<td>DOCU</td>
<td>0.67</td>
<td>0.67</td>
<td>0.82</td>
<td>0.91</td>
<td>1.00</td>
<td>1.12</td>
<td>1.23</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Technology Maturity</td>
<td>TMAT</td>
<td>2.50</td>
<td>2.50</td>
<td>1.75</td>
<td>1.37</td>
<td>1.00</td>
<td>0.85</td>
<td>0.70</td>
<td>~~~</td>
<td>N</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Productivity Range (PR) is the Highest Number / Lowest Number and is an indication of the "Relative Degree of Influence" of this parameter on SE effort as currently

The "Suggested" column has no immediate impact in the COSYSMO SE Costing Mode. However, for the COSYSMO SE Data Collection Mode, it serves as a means of collecting your inputs as to what you think the "Relative Degree of Influence" of this parameter should be based upon your overall experience (not specific to the past program being characterized). If you agree with the "Current" number, do nothing. If you disagree, simply overwrite the current number with a new number (n>1.0) in the appropriate cell.

Select the Rating from the pull-down menu that best represents the Rating program being estimated in the Mode or in the SE Data Collection Mode that best characterizes the program for which you are providing the rate.
5. Estimate Size - Requirements

This driver represents the number of requirements for the system-of-interest at a specific level of design. Requirements may be functional, performance, feature, or service-oriented in nature depending on the methodology used for specification. They may also be defined by the customer or contractor. System requirements can typically be quantified by counting the number of applicable “shall’s” or “will’s” in the system or marketing specification. Do not include a requirements expansion ratio – only provide a count for the requirements of the system-of-interest as defined by the system or marketing specification.

<table>
<thead>
<tr>
<th>New No. of System Requirements</th>
<th>Adapted No. of System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>New REQ Complexity Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REQ Scaling Factor</td>
</tr>
<tr>
<td>Easy</td>
<td>0.50</td>
</tr>
<tr>
<td>Nominal</td>
<td>1.00</td>
</tr>
<tr>
<td>Difficult</td>
<td>4.00</td>
</tr>
</tbody>
</table>

- Easy
 - Well specified
 - Traceable to source
 - Simple to understand
 - Little requirements overlap
 - Familiar
- Nominal
 - Loosely specified
 - Can be traced to source with some effort
 - Takes some effort to understand
 - Some overlap
 - Generally familiar
- Difficult
 - Poorly specified
 - Hard to trace to source
 - Hard to understand
 - High degree of requirements overlap
 - Unfamiliar

PSM – 7/16/03
9. *Time Phase the Estimate – Overall Staffing
Parametric Cost Model Critical Path

<table>
<thead>
<tr>
<th>Usual # Months*</th>
<th>Critical Path Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Converge on cost drivers, WBS</td>
</tr>
<tr>
<td>6</td>
<td>Converge on detailed definitions and rating scales</td>
</tr>
<tr>
<td>12</td>
<td>Obtain initial exploratory dataset (5-10 projects)</td>
</tr>
<tr>
<td>6</td>
<td>Refine model based on data collection & analysis experience</td>
</tr>
<tr>
<td>12+</td>
<td>Obtain IOC calibration dataset (30 projects)</td>
</tr>
<tr>
<td>9</td>
<td>Refine IOC model and tool</td>
</tr>
</tbody>
</table>

Can be shortened and selectively overlapped
Calendar of Activities: 2003/04

- **INCOSE 2003** (Washington, DC)
- **COCOMO Forum** (Los Angeles, CA)
- **USC CSE Annual Research Review** (Los Angeles, CA)
- **Practical Software & Systems Measurement Workshop** (Keystone, CO)
- **Conference on Systems Engineering Research** (Los Angeles, CA)
- **Working Group Meeting**
Workshop Agenda

Day 1 (1:30 AM – 5:00 PM 7/16)
 Next-level tutorial
 Review of drivers
 SE Sizing discussion
 Tool demo

Day 2 (8:30 AM – 4:30 PM 7/17)
 Action item review from February meeting
 Discussion of key driver issues
 Data collection form
 Data collection lessons learned
 Possible data sources
 COSYSMO Trade Study
 Delphi exercise
Questions or Comments?

Dr. Barry Boehm
boehm@sunset.usc.edu
Ricardo Valerdi
rvalerdi@sunset.usc.edu

Websites
http://sunset.usc.edu
http://valerdi.com/cosysmo