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1. Model definition, scope, and assumptions 
The Constructive Systems Engineering Cost Model (COSYSMO) is a model that can help people 
reason about the economic implications of systems engineering on projects.  Similar to its 
predecessor, COCOMO II1, it was developed at the University of Southern California as a 
research project2 with the help of BAE Systems, General Dynamics, Lockheed Martin, Northrop 
Grumman, Raytheon, and SAIC.  COSYSMO follows a parametric modeling approach used to 
estimate the quantity of systems engineering labor, in terms of person months, required for the 
conceptualization, design, test, and deployment of large-scale software and hardware projects.  
User objectives include the ability to make Proposal estimates, investment decisions, budget 
planning, project tracking, tradeoffs, risk management, strategy planning, and process 
improvement measurement. 
 
The academicCOSYSMO model is a simple EXCEL implementation that should be compared to 
other quoting methods and eventually calibrated to reflect the organization’s definitions, scope of 
systems engineering activities, and life cycle coverage.  The parameters in the model are defined 
in sections 1. c) and 1. d), followed by a description of the work breakdown structure used in the 
model which is driven by the ANSI/EIA 632 Processes for Engineering a System3 and described 
in sections 1. d) and 3. a).  The scope of COSYSMO is defined by system life cycle phases 
inspired by the ISO/IEC 15288 Systems Engineering – System Life Cycle Processes4 standard 
described in section 3. b). 
 
Before users begin to work with COSYSMO, they should be aware of the inherent assumptions 
embedded in the model.  The most important assumptions are that the user performing an 
estimate with COSYSMO has a basic understanding of: (1) the definitions of the eighteen drivers, 
(2) the associated counting rules for the size drivers, (3) the output of the model, and (4) how 
COSYSMO relates to the general systems engineering context (i.e., process, labor categories) in 
their organization.  Beyond the assumptions surrounding the user, the model has additional 
embedded assumptions that reflect its ancestry.  These assumptions are that: 

 the organization using the model defines systems engineering in a way that is compatible 
with the INCOSE definition (see section 1. a) for definition) 

 a predetermined set of systems engineering activities and life cycle phases exist in the 
organization and these are closely aligned with the two aforementioned standards 

 the model will be used to estimate effort from the contractor perspective 
 the organization, not its subcontractors, is performing a majority of the systems 

engineering work 
 reuse of requirements and interfaces is minimal 
 the organization using the model develops systems for the defense or aerospace domain 

similar to those developed by the six organizations that participated in the industry 
calibration 

 
The implications of these assumptions are significant and, if not carefully considered, can lead to 
insignificant results.  
 
           
 
 
 

                                                 
1 Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, 

D. J. and Steece, B., Software Cost Estimation With COCOMO II, Prentice Hall, 2000. 
2 Valerdi, R., “The Constructive Systems Engineering Cost Model (COSYSMO),” unpublished 

PhD Dissertation, University of Southern California, May 2005. 
3 ANSI/EIA-632-1988 Processes for Engineering a System, 1999. 
4 ISO/IEC 15288:2002(E) Systems Engineering - System Life Cycle Processes, 2002. 
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a) Definition of key terms 
 
Cost driver – see “Effort Multiplier” 
 
Cost Estimating Relationship – a mathematical expression that represents the relationship 
between the model’s independent variables (size drivers and cost drivers) and the dependent 
variable (person months). 
 
Effort Multiplier – one of fourteen parameters in the model, also know as a cost drivers, that have 
a multiplicative effect on systems engineering effort either in the way of an effort savings or effort 
penalty. (also see “Rating”) 
 
Effort Multiplier Ratio – the ratio of the highest valued rating multiplier and the lowest valued 
rating multiplier for an individual cost driver.  This is an indication of the swing between the effort 
savings and effort penalty associated with a driver and is used to compare the relative 
significance between drivers. 
 
Life cycle – a set of six phases which describe the typical evolution of a system in which systems 
engineers perform work.  COSYSMO uses a life cycle inspired by the ISO/IEC 15288 standard. 
 
Person Month – a generally accepted unit of measure for people effort which usually equals 152 
person hours.  It is the dependent variable for the COSYSMO model. 
 
PRED – the criterion for measuring predictive accuracy of cost models, usually expressed in 
three different ranges: 20%, 25%, and 30%.  A model with perfect predictive ability would have a 
PRED(20) of 100% meaning that it would estimate within 20% of the actual effort, 100% of the 
time. 
 
Rating scale – an ordinal scale to represent the different attributes of a cost driver.  It can have 
anywhere between four and seven rating levels ranging from “Very Low” to “Extra High” and 
whose default value is “Nominal”. 
 
Rating – the value assigned for a particular cost driver by the model user based on their 
assessment of the impact of that driver on the systems engineering effort estimate. 
 
Size drivers – one of four parameters in the model which have an additive effect on systems 
engineering effort. 
 
Systems Engineering – The formal INCOSE definition of SE is “an interdisciplinary approach and 
means to enable the realization of successful systems.  It focuses on defining customer needs 
and required functionality early in the development cycle, documenting requirements, then 
proceeding with design synthesis and system validation while considering the complete problem.”  
See definitions for “WBS” and “Life Cycle” for the activities that are included in SE and the scope 
of SE life cycle as used in COSYSMO.  
 
Work Breakdown Structure – the set of activities that represent specific tasks that, in this case, 
are performed by systems engineers and are included in COSYSMO.  The thirty three activities 
described in the ANSI/EIA 632 standard define the scope of COSYSMO and its estimate. 
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b) COSYSMO Algorithm 
Each parameter in the COSYSMO Algorithm is part of the Cost Estimating Relationship (CER) 
that was defined by systems engineering experts. 

∏∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1
,,,,,, )(

j
j

E

k
kdkdknknkekeNS EMwwwAPM  

Where: 
PMNS = effort in Person Months (Nominal Schedule) 
A = calibration constant derived from historical project data  
k = {REQ, IF, ALG, SCN} 
wx =  weight for “easy”, “nominal”, or “difficult” size driver 

xΦ = quantity of “k” size driver 
E   = represents diseconomies of scale 
EM = effort multiplier for the jth cost driver.  The geometric product results in an overall effort 
adjustment factor to the nominal effort. 
 
The size of the system is the weighted sum of the REQ, IF, ALG, and SCN parameters and 
represents the additive part of the model while the EM factor is the product of the 14 effort 
multipliers and represents the multiplicative part of the model.  This algorithm is built into the 
academicCOSYSMO spreadsheet in cell E29 where the systems engineering person month 
estimate is displayed. 

 
Detailed definitions for these parameters are provided in the following sections. 
 

c) Size Drivers 
The size drivers should be entered first because they require the user to think about the 
quantitative parameters that determine size of the system in terms of systems engineering.  The 
value of the size drivers can be entered in the yellow cells show below.  The spreadsheet will 
keep a running total of the number of equivalent requirements in cell F9 which is a weighted sum 
of the four size drivers. 
 

 
 
Although there are twelve available cells for data entry, an estimate can be obtained by entering 
information into only one cell.  This is not recommended because the absence of project size 
drivers typically means that incomplete information exists which is not a good time to do an 
estimate. 
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Number of System Requirements 
This driver represents the number of requirements for the system-of-interest at a specific level of 
design.  The quantity of requirements includes those related to the effort involved in system 
engineering the system interfaces, system specific algorithms, and operational scenarios.  
Requirements may be functional, performance, feature, or service-oriented in nature depending 
on the methodology used for specification.  They may also be defined by the customer or 
contractor.  Each requirement may have effort associated with it such as verification and 
validation, functional decomposition, functional allocation, etc.  System requirements can typically 
be quantified by counting the number of applicable shalls/wills/shoulds/mays in the system or 
marketing specification.  Note: some work is involved in decomposing requirements so that they 
may be counted at the appropriate system-of-interest. 
 

Easy Nominal Difficult 
- Simple to implement - Familiar - Complex to implement or 

engineer 
- Traceable to source - Can be traced to source with 

some effort 
- Hard to trace to source 

- Little requirements overlap - Some overlap - High degree of 
requirements overlap 

 
Number of System Interfaces 
This driver represents the number of shared physical and logical boundaries between system 
components or functions (internal interfaces) and those external to the system (external 
interfaces). These interfaces typically can be quantified by counting the number of external and 
internal system interfaces among ISO/IEC 15288-defined system elements. 
 

Easy Nominal Difficult 
- Simple message - Moderate complexity - Complex protocol(s) 
- Uncoupled - Loosely coupled - Highly coupled 
- Strong consensus - Moderate consensus - Low consensus 
- Well behaved - Predictable behavior - Poorly behaved 

 
Number of System-Specific Algorithms 
This driver represents the number of newly defined or significantly altered functions that require 
unique mathematical algorithms to be derived in order to achieve the system performance 
requirements. As an example, this could include a complex aircraft tracking algorithm like a 
Kalman Filter being derived using existing experience as the basis for the all aspect search 
function. Another example could be a brand new discrimination algorithm being derived to identify 
friend or foe function in space-based applications. The number can be quantified by counting the 
number of unique algorithms needed to realize the requirements specified in the system 
specification or mode description document. 
 

Easy Nominal Difficult 
- Algebraic - Straight forward calculus - Complex constrained 

optimization; pattern 
recognition 

- Straightforward structure - Nested structure with 
decision logic 

- Recursive in structure  
  with distributed control 

- Simple data - Relational data - Noisy, ill-conditioned data 
- Timing not an issue - Timing a constraint - Dynamic, with timing and 

uncertainty issues 
- Adaptation of library-based 
solution 

- Some modeling involved - Simulation and modeling 
involved 
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Number of Operational Scenarios 
This driver represents the number of operational scenarios that a system must satisfy. Such 
scenarios include both the nominal stimulus-response thread plus all of the off-nominal threads 
resulting from bad or missing data, unavailable processes, network connections, or other 
exception-handling cases.  The number of scenarios can typically be quantified by counting the 
number of system test thread packages or unique end-to-end tests used to validate the system 
functionality and performance or by counting the number of use cases, including off-nominal 
extensions, developed as part of the operational architecture. 
 

Easy Nominal Difficult 
- Well defined - Loosely defined - Ill defined 
- Loosely coupled - Moderately coupled - Tightly coupled or many 

dependencies/conflicting 
requirements 

- Timelines not an issue - Timelines a constraint - Tight timelines through 
scenario network 

- Few, simple off-nominal 
threads 

- Moderate number or 
complexity of off-nominal 
threads 

- Many or very complex off-
nominal threads 

 
d) Cost Drivers 

The cost drivers in the model represent the multiplicative part of the model introduced.  These 
drivers are also referred to as effort multipliers since they affect the entire systems engineering 
effort calculation in a multiplicative manner.  Assigning ratings for these drivers is not as straight 
forward as the size drivers mentioned previously.  The difference is that most of the cost drivers 
are qualitative in nature and require subjective assessment in order to be rated.  Provide a rating 
for each of the cost drivers that apply to your project/system of interest by using the drop-down 
box in the yellow cells of the spreadsheet.  As values are selected, the cells will change colors to 
represent either a cost savings (green) or a cost penalty (red). 
 

 
 
The model displays the composite effort multiplier in cell D25 which is a running total of the 
product of the fourteen cost drivers.  It is an indicator of the overall environment in which the 
systems engineering is being performed. 
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1. Requirements Understanding 

This cost driver rates the level of understanding of the system requirements by all 
stakeholders including the systems, software, hardware, customers, team members, users, 
etc. Primary sources of added system engineering effort are unprecedented systems, 
unfamiliar domains, or systems whose requirements are emergent with use. 
 

Very Low Low Nominal High Very High 
Poor: emergent 
requirements or 
unprecedented 
systems 

Minimal: many 
undefined areas 

Reasonable: some 
undefined areas 

Strong: few 
undefined areas 

Full: understanding 
of requirements, 
familiar systems 

 
2. Architecture Understanding 

This cost driver rates the relative difficulty of determining and managing the system 
architecture in terms of platforms, standards, components (COTS, GOTS, NDI, new), 
connectors (protocols), and constraints. This includes tasks like systems analysis, tradeoff 
analysis, modeling, simulation, case studies, etc. 
 

Very low Low Nominal High Very High 
Poor 
understanding 
of architecture 
and COTS, 
unprecedented 
system 

Minimal 
understanding of 
architecture and 
COTS, many 
unfamilar areas 

Reasonable 
understanding of 
architecture and 
COTS, some 
unfamiliar areas  

Strong 
understanding of 
architecture and 
COTS, few 
unfamiliar areas 

Full 
understanding of 
architecture, 
familiar system 
and COTS 

>6 level WBS 5-6 level WBS 3-4 level WBS 2 level WBS   
 

3. Level of Service Requirements 
This cost driver rates the difficulty and criticality of satisfying the ensemble of level of service 
requirements, such a security, safety, response time, interoperability, maintainability, Key 
Performance Parameters (KPP’s), the “ilities”, etc. 
 

 Very low Low Nominal High Very High 
Difficulty Simple; single 

dominant KPP 
Low, some 
coupling 
among KPPs 

Moderately 
complex, 
coupled KPPs 

Difficult, 
coupled KPPs 

Very complex, 
tightly coupled 
KPPs 

Criticality Slight 
inconvenience 

Easily 
recoverable 
losses 

Some loss High financial 
loss 

Risk to human 
life 

 
4. Migration Complexity 

This cost driver rates the extent to which the legacy system affects the migration complexity, 
if any. Legacy systems components, databases, workflows, environments, etc., may affect 
the new system implementation due to new technology introductions, planned upgrades, 
increased performance, business process reengineering, etc. 

 
 Nominal High Very High Extra High 

Legacy 
contractor 

Self; legacy 
system is well 
documented.  
Original team 
largely available 

Self; original 
development team 
not available; 
most 
documentation 
available 

Different 
contractor; limited 
documentation 

Original contractor 
out of business; 
no documentation 
available 

Effect of 
legacy 

system on 

Everything is 
new; legacy 
system is 

Migration is 
restricted to 
integration only 

Migration is 
related to 
integration and 

Migration is 
related to 
integration, 



Page 10 of 28 

new 
system 

completely 
replaced or non-
existent 

development development, 
architecture and 
design 

 
5. Technical Risk 

This represents the maturity, readiness, and obsolescence of the technology being 
implemented. Immature or obsolescent technology will require more Systems Engineering 
effort. 
 

Viewpoint Very low Low Nominal High Very High 
Lack of 
Maturity 

Technology 
proven and 
widely used 
throughout 
industry 

Proven through 
actual use and 
ready for 
widespread 
adoption 

Proven on pilot 
projects and 
ready to roll-out 
for production 
jobs 

Ready for pilot 
use 

Still in the 
laboratory 
 
 

Lack of 
readiness 

Mission proven 
(TRL 9) 

Concept 
qualified (TRL 
8) 

Concept has 
been 
demonstrated 
(TRL 7) 

Proof of 
concept 
validated (TRL 
5 & 6) 

Concept 
defined (TRL 3 
& 4) 

Obsolescence   Technology is 
the state of the 
practice, 
Emerging 
technology could 
compete in 
future 

Technology is 
stale. New and 
better 
technology is 
on the horizon 
in near -term 

Technology is 
outdated and 
use should be 
avoided in new 
system. Spare 
parts supply is 
scarce.  

 
6. Documentation match to life cycle needs 

This represents the formality and detail of the documentation required to be formally 
delivered based upon the life cycle needs of the system. 

 
Viewpoint Very low Low Nominal High Very High 
Formality General goals, 

stories 
Broad 
guidance, 
flexibility is 
allowed 

Risk-driven 
degree of 
formality 

Partially 
streamlined 
process, 
largely 
standards-
driven 

Rigorous, 
follows 
strict 
standards 
and 
requirement
s 

Detail Minimal or no 
specified 
documentation 
and review 
requirements 
relative to life 
cycle needs 

Relaxed 
documentation 
and review 
requirements 
relative to life 
cycle needs 

Risk-driven 
degree of 
formality, 
amount of 
documentation 
and reviews in 
sync and 
consistent with 
life cycle needs 
of the system 

High amounts 
of 
documentation, 
more rigorous 
relative to life 
cycle needs, 
some revisions 
required 

Extensive 
documentat
ion and 
review 
requirement
s relative to 
life cycle 
needs, 
multiple 
revisions 
required 
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7. Number and Diversity of Installations or Platforms 

The number of different platforms that will host the system and number of installations 
required. The complexity of the operating environment (space, sea, land, mobile, portable, 
information assurance / security) must be considered in weighting your answer. In a wireless 
network environment it could be the number of unique installation sites and the number of or 
types of fixed clients, mobile clients, and servers. The number of platforms being 
implemented should be added to the number being phased out (dual count), in order to 
account for total life cycle labor. 

 
Viewpoint Nominal High Very High Extra High 
Sites & 
installations 

Single 
installation site or 
configuration 

2-3 site or 
diverse 
installation 
configurations 

4-5 sites or 
diverse 
installation 
configurations 

> 6 sites or 
diverse 
installation 
configuration 

Operating 
environment 

Existing facility 
meets all known 
environmental 
operating 
requirements 

Moderate 
environmental 
constraints. 
Controlled 
environment 
HVAC 
constraints or 
electrical power 
constraints 

Ruggedized 
mobile land-
based 
requirements. 
Some 
information 
security 
requirements. 
Coordination 
several 
regulatory or 
cross functional 
agencies 
required. 

Harsh 
environment 
(space, sea, 
airborne), 
sensitive 
information 
security 
requirements. 
Coordination 
between 3 or 
more regulatory 
or cross 
functional 
agencies 
required. 

< 3 types of 
platforms being 
installed and or 
being phased out 
or replaced 

4-7 types of 
platforms being 
installed and or 
being phased out 
or replaced. 

8-10 types of 
platforms being 
installed and or 
being phased out 
or replaced 

> 10 types of 
platforms being 
installed and or 
being phased out 
or replaced 

Homogeneous 
platform 

Compatible 
platforms 

Heterogeneous, 
but compatible 
platform 

Heterogeneous, 
incompatible 
platforms 

Platforms Typically 
networked using 
a single industry 
standard protocol 

Typically 
networked using 
a single industry 
standard protocol 
and multiple 
operating 
systems 

Typically network 
using mix of 
industry standard 
protocols and 
proprietary 
protocols  with 
single operating 
systems 

Typically 
networked using 
a mix of industry 
standard 
protocols and 
proprietary 
protocols with 
multiple 
operating 
systems. 
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8. Number of Recursive Levels in the Design 

The number of levels of design related to the system-of-interest (as defined by ISO/IEC 
15288) and the amount of required SE effort for each level. 
 

Viewpoint Very Low Low Nominal High Very High 
Number 
of levels 

1 2 3 to 5 6 to 7 > 7 

Required 
SE Effort 

Focused 
on single 
product 

Some 
vertical and 
horizontal 
coordination 

More complex 
interdependencies 
coordination and 
trade-off analysis 

Very complex 
interdependencies 
coordination and 
trade-off analysis 

Extremely complex 
interdependencies 
coordination and 
trade-off analysis 

 
9. Stakeholder Team Cohesion 

This represents a multi-attribute parameter which includes leadership, shared vision and 
diversity of stakeholders, approval cycles, group dynamics, IPT framework, team dynamics 
and amount of change in responsibilities. It further represents the heterogeneity in 
stakeholder community of the end users, customers, implementers, and development team. 
 

Viewpoint Very Low Low Nominal High Very High 
Culture Stake holders 

with diverse 
domain 
experience, 
task nature, 
language, 
culture, 
infrastructure 
of highly 
heterogeneou
s stakeholder 
communities 

Heterogeneou
s stakeholder 
community. 
Some 
similarities in 
language and 
culture. 

Shared 
project 
culture. 

Strong team 
cohesion and 
project 
culture. 
Multiple 
similarities in 
language and 
expertise. 

Virtual 
homogeneous 
stake holder 
communities. 
Institutionalize
d project 
culture.  

Compatibilit
y 

Highly 
conflicting 
organizational 
objectives 

Converging 
organizational 
objectives  

Compatible 
organization
al objectives 

Clear roles 
and 
responsibilitie
s.  

Strong mutual 
advantage to 
collaboration. 

Familiarity Unfamiliar- 
never worked 
together 

Willing to 
collaborate- 
little 
experience 

Some 
familiarity 

High level of 
familiarity 

Extensive 
successful 
collaboration 

 
10. Personnel Experience and Continuity 

The applicability and consistency of the staff at the initial stage of the project with respect to 
the domain, customer, user, technology, tools, etc. 
 

Viewpoint Very Low Low Nominal High Very High 
Experience Less than 2 

months 
1 yr 
continuous 
experience or 
other similar 
technical 
tasks in 
similar job 

3 years of 
continuous 
experience 

5 years of 
continuous 
experience 

10 years of 
continuous 
experience 

Annual 
Turnover 

48% 24% 12% 6% 3% 
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11. Process Capability 

The consistency and effectiveness of the project team at performing SE processes.  This may 
be based on assessment ratings from a published process model (e.g., CMMI, EIA-731, SE-
CMM, ISO/IEC15504).  It can alternatively be based on project team behavioral 
characteristics, if no assessment has been performed.  

 
  Very Low Low Nominal High Very High Extra High 

A
ss

es
sm

en
t 

R
at

in
g 

Level 0 (if 
continuous 
model) 

Level 1 Level 2 Level 3 Level 4 Level 5 

Pr
oj

ec
t T

ea
m

 B
eh

av
io

ra
l C

ha
ra

ct
er

is
tic

s 

Ad Hoc 
approach to 
process 
performance 

Performed 
SE process, 
activities 
driven only 
by immediate 
contractual or 
customer 
requirements, 
SE focus 
limited 

Managed SE 
process, 
activities 
driven by 
customer and 
stakeholder 
needs in a 
suitable 
manner, SE 
focus is 
requirements 
through 
design, 
project-
centric 
approach – 
not driven by 
organizational 
processes 

Defined SE 
process, 
activities 
driven by 
benefit to 
project, SE 
focus is 
through 
operation, 
process 
approach 
driven by 
organizational 
processes 
tailored for 
the project 

Quantitatively 
Managed SE 
process, 
activities 
driven by SE 
benefit, SE 
focus on all 
phases of the 
life cycle 

Optimizing  
SE process, 
continuous 
improvement, 
activities 
driven by 
system 
engineering 
and 
organizational 
benefit, SE 
focus is 
product life 
cycle & 
strategic 
applications 

SE
M

P 
So

ph
is

tic
at

io
n 

Management 
judgment is 
used 

SEMP is 
used in an 
ad-hoc 
manner only 
on portions of 
the project 
that require it 

Project uses 
a SEMP with 
some 
customization 

Highly 
customized 
SEMP exists 
and is used 
throughout 
the 
organization  

The SEMP is 
thorough and 
consistently 
used; 
organizational 
rewards are 
in place for 
those that 
improve it 

Organization 
develop best 
practices for 
SEMP; all 
aspects of the 
project are 
included in 
the SEMP; 
organizational 
rewards exist 
for those that 
improve it 
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12. Multisite Coordination 

Location of stakeholders, team members, resources, corporate collaboration barriers. 
 
 Very Low Low Nominal High Very High Extra High 

C
ol

lo
ca

tio
n 

International, 
severe time 
zone impact 

Multi-city 
and multi-
national, 
considerable 
time zone 
impact 

Multi-city or 
multi-
company, 
some time 
zone effects 

Same city or 
metro area 

Same building 
or complex, 
some co-
located 
stakeholders or 
onsite 
representation 

Fully co-
located 
stakeholders 

C
om

m
un

ic
at

io
ns

 

Some 
phone, mail 

Individual 
phone, FAX 

Narrowband 
e-mail 

Wideband 
electronic 
communication 

Wideband 
electronic 
communication, 
occasional 
video 
conference 

Interactive 
multimedia 

C
or

po
ra

te
 

co
lla

bo
ra

tio
n 

ba
rr

ie
rs

 

Severe 
export and 
security 
restrictions 

Mild export 
and security 
restrictions 

Some 
contractual 
& 
Intellectual 
property 
constraints 

Some 
collaborative 
tools & 
processes in 
place to 
facilitate or 
overcome, 
mitigate 
barriers 

Widely used 
and accepted 
collaborative 
tools & 
processes in 
place to 
facilitate or 
overcome, 
mitigate 
barriers 

Virtual team 
environment 
fully 
supported 
by 
interactive, 
collaborative 
tools 
environment 

 
13. Tool Support 

Coverage, integration, and maturity of the tools in the Systems Engineering environment.  
 

Very low Low Nominal High Very High 
No SE tools Simple SE tools, 

little integration 
Basic SE tools 
moderately 
integrated 
throughout the 
systems 
engineering 
process 

Strong, mature 
SE tools, 
moderately 
integrated with 
other disciplines 

Strong, mature 
proactive use of 
SE tools 
integrated with 
process, model-
based SE and 
management 
systems 
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e) Work Breakdown Structure 

The definition of systems engineering used in COSYSMO hinges on the 33 activities defined in 
the ANSI/EIA 632 standard shown in Table 1.  These activities are rolled up into Process 
Categories and Fundamental Processes.  The latter categories will be used later as a general 
framework for categorizing systems engineering effort. 

Table 1. Systems Engineering Work Breakdown Structure per ANSI/EIA 632 

Fundamental 
Processes 

Process Categories Activities 

Supply Process (1) Product Supply Acquisition 
and Supply Acquisition Process (2) Product Acquisition, (3) Supplier Performance 

Planning Process (4) Process Implementation Strategy, (5) Technical 
Effort Definition, (6) Schedule and Organization, (7) 
Technical Plans, (8)Work Directives 

Assessment Process (9) Progress Against Plans and Schedules, (10) 
Progress Against Requirements, (11) Technical 
Reviews 

Technical 
Management 

Control Process (12) Outcomes Management, (13) Information 
Dissemination 

Requirements 
Definition Process 

(14) Acquirer Requirements, (15) Other Stakeholder 
Requirements, (16) System Technical 
Requirements System 

Design Solution Definition 
Process 

(17) Logical Solution Representations, (18) Physical 
Solution Representations, (19) Specified 
Requirements 

Implementation 
Process 

(20) Implementation 
Product 
Realization Transition to Use 

Process 
(21) Transition to use 

Systems Analysis 
Process 

(22) Effectiveness Analysis, (23) Tradeoff Analysis, 
(24) Risk Analysis 

Requirements 
Validation Process 

(25) Requirement Statements Validation, (26) 
Acquirer Requirements, (27) Other Stakeholder 
Requirements, (28) System Technical 
Requirements, (29) Logical Solution 
Representations 

System Verification 
Process 

(30) Design Solution Verification, (31) End Product 
Verification, (32) Enabling Product Readiness 

Technical 
Evaluation 

End Products 
Validation Process 

(33) End products validation 
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2. Model Usage 
 

a) Determining size via REQ, INTF, ALG, SCN 
Requirements 
Different systems will exhibit different levels of requirements decomposition depending on the 
application domain, customer’s ability to write good system requirements, and the functional size 
of the system.  The following rules should increase the reliability of requirements counting by 
different organizations on different systems regardless of their application domain: 

1. Determine the system of interest.  For an airplane, the system of interest may be the 
avionics subsystem or the entire airplane depending on the perspective of the 
organization interested in estimating systems engineering.  This key decision needs to be 
made early on to determine the scope of the COSYSMO estimate and identify the 
requirements that are applicable for the chosen system. 

2. Decompose system objectives, capabilities, or measures of effectiveness into 
requirements that can be tested, verified, or designed.  The decomposition of 
requirements must be performed by the organization using COSYSMO because the initial 
set of requirements provided by the customer may not be representative of the actual 
systems engineering effort required for the contractor to deliver the system.  The level of 
decomposition of interest for COSYSMO is the level in which the system will be designed 
and tested; which is equivalent to the TYPE A, System/Segment Specification (MIL-STD 
490-A 1985).  For some organizations, these are referred to as “systems engineering 
requirements” because they reflect the level at which systems engineers do their job. 

3. Provide a graphical or narrative representation of the system of interest and how it 
relates to the rest of the system.  This step focuses on the hierarchical relationship 
between the system elements.  This information can help describe the size of the system 
and its levels of design.  It serves as a sanity check for the previous two steps. 

4. Count the number of requirements in the system/marketing specification or the 
verification test matrix for the level of design in which systems engineering is 
taking place in the desired system of interest.  The focus of the counted requirements 
needs to be for systems engineering.  Lower level requirements may not be applicable if 
they have no effect on systems engineering.  Requirements may be counted from the 
Requirements Verification Trace Matrix (RVTM) – or an equivalent construct – that is 
used for testing system requirements.  The same rules apply as before: all counted 
requirements must be at the same design or bid level and lower level requirements must 
be disregarded if they do not influence systems engineering effort. 

5. Determine the volatility, complexity, and reuse of requirements.  Once the quantity 
of requirements has been determined, the three adjustment factors can be applied.  
Currently three complexity factors have been determined: easy, nominal, and difficult.  
These weights for these factors were determined using expert opinion through the use of 
a Delphi survey.  The volatility and reuse factors are optional and depend on the version 
of COSYSMO implementation being used. 

 
The objective of the five steps is to lead users down a consistent path of similar logic when 
determining the number of system requirements for the purposes of estimating systems 
engineering effort in COSYSMO.  It has been found that the level of decomposition described in 
step #2 may be the most volatile step as indicated by the data collected thus far.  To alleviate 
this, a framework for software use case decomposition5 was adopted.  The basic premise behind 
the framework is that different levels exist for specific system functions.  Choosing the appropriate 
level can provide a focused basis for describing the customer and developer needs.  A metaphor 
is used to describe four levels: sky level, kite level, sea level, and underwater level.  The sea level 
goals represent a user level task that is the target level for counting requirements in COSYSMO. 
 

                                                 
5 Cockburn, A., Writing Effective Use Cases, Boston, Addison-Wesley, 2001. 
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Interfaces 
Similar challenges of decomposition exist for the # of interfaces driver because interfaces are 
often defined at multiple levels of the system hierarchy.  The target level for counting interfaces 
involves the following rules: 

1. Focus on technical interfaces only.  Other parameters in the model address 
organizational interfaces. 

2. Identify the interfaces that involve systems engineering for your system of interest.  
Counting interfaces at the integrated circuit or software subroutine level is often too low.  
Sometimes there may be multiple levels of interfaces connecting higher system 
elements, lower system elements, and elements at the same level of the system 
hierarchy.  Identify which level is driving the amount of systems engineering effort in your 
organization and focus on it. 

3. Determine the number of unique interface types.  If twenty interfaces exist but there 
are only two types of unique interfaces, then the relevant number to count is two.  This is 
especially true if there is systems engineering effort involved with developing a unique 
test procedure for each of the unique interfaces. 

4. Focus on the logical aspects of the interface to determine complexity.  This 
provides a better indicator of the complexity of each interface from a systems engineering 
standpoint.  Counting the number of wires in an interface may not be a good indicator.  
Instead, the protocol used or the timing requirement associated with the interface will be 
a better indicator of complexity. 

5. Consider directionality of the interface.  Bidirectional interfaces count as two 
interfaces because they require coordination on both ends. 

 
Algorithms 
Since the influence of algorithms can vary by organization, the process of identifying an algorithm 
for COSYSMO can also be different.  Ultimately the sources from which the number of algorithms 
can be obtained change as the system definition matures.  For example, during the conceptual 
stage of a system, where there is a limited amount of information available, the only indicators 
may be functional block diagrams.  As the system design evolves and more uncertainties are 
resolved, there are more sources available to aid in the estimation of algorithms.  Table 2 
includes examples of the entities that are available at different stages of the system life cycle and 
their corresponding attributes that can be used to estimate the number of algorithms.  They are 
listed in typical order of availability; the first entities are typically available during the conceptual 
stages while the latter ones are available as the system design evolves. 

Table 2. Candidate Entities and Attributes for Algorithms 

Entities Attributes 
Historical database # of algorithms 
Functional block diagram # of functions that relate to algorithms 
Mode description document algorithms 
Risk analysis algorithm related risks 
System specification algorithms 
Subsystem description documents algorithms 
Configuration baseline technical notes 

 
The attributes may provide more detailed information about the functions that the algorithms 
perform.  This can aid in determining the complexity of that algorithm, an important step in 
estimating size for COSYSMO. 
 
The approach for determining the quantity of algorithms in a system is unavoidably different for 
each organization.  System algorithms are unique in the sense that they are highly related to the 
“# of Requirements” and “# of Interfaces” size drivers.  If not explicitly defined up front, the 
number of algorithms can be derived from a system-level requirement or deduced from the 
properties of an interface.  In terms of systems engineering effort, the existence of an algorithm 
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introduces additional work related to simulation, implementation, test cases, documentation, and 
support.  These activities are illustrated in Figure 1. 
 

 
Figure 1. Effort Decomposition Associated With an Algorithm 

There exists an entire process in which the general types of algorithms needed are determined, 
math is developed to implement them, algorithm-related requirements are communicated to other 
designers (subsystems, hardware, software, etc.) for what data and data quality requirements, 
and algorithm trade-offs are performed.  These activities are within the scope of systems 
engineering and are covered in COSYSMO. 
 
In some cases, a significant amount of effort associated with systems engineering as related to 
algorithms will involve reuse which can reduce the complexity of algorithms and in turn the effort 
associated with their implementation.  Conversely, there may be situations where algorithms are 
unprecedented and loosely defined.  From an implementation standpoint, the number of design 
constraints – such as timing restrictions or processor limitations – may influence the complexity of 
software algorithms when compared to hardware algorithms.  In either case, both types of 
algorithms should be counted and assigned a level of complexity for input into COSYSMO. 
 
To demonstrate the process of identifying and counting an algorithm an example is provided from 
the field of signal processing.  For purposes of this example it is assumed that a system 
specification has been developed.  From this specification, the following system level requirement 
is obtained: All images captured by the sensor shall be compressed in compliance with MPEG-4 
coding standard.  This requirement triggers several possible solutions that meet the required 
standard.  A developer may decide to implement the requirement with a well-known algorithm 
used for compressing visual images: MPEG-4 Visual Texture Coding (VTC).  As illustrated in 
Figure 1, this algorithm generates products associated with it which lead to increased systems 
engineering effort that is estimated by COSYSMO.  Other effort generated by the implementation 
specification, such as software engineering, is not estimated by COSYSMO.  Models such as 
COCOMO II should be used to estimate the software development effort.  For purposes of 
COSYSMO, the MPEG-4 VTC algorithm counts as one distinct algorithm even if it is used 
multiple times in the same system.  Since this is a well known algorithm with predictable behavior 
it qualifies as an “easy” algorithm. 
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Operational Scenarios 
In a similar way requirements were defined at sea level, operational scenarios must also be 
identified at a level that is of interest to systems engineering.  Operational scenarios are often 
obtained via test cases or system use cases since they represent end-to-end system functionality 
or independent capabilities of a system.  For example, an operational scenario for a Windows XP 
computer is to operate in “safe mode”.  Use case diagrams in UML are also helpful for 
determining the number and complexity of use cases in a system. 
 

b) How to avoid double counting between size drivers 
Each size driver takes the form of both a continuous and categorical variable.  As a continuous 
variable it can represent quantities for “requirements” or interfaces”, which can range from small 
values to very large ones; with most cases falling within an expected range (i.e., most systems 
have hundreds of systems engineering requirements).  As a categorical variable it can be 
represented in terms of discrete categories such as “easy”, “nominal”, or “difficult” to describe the 
complexity associated with each requirement, interface, etc.  It is expected that most systems 
have requirements that fall into at least one of these categories.  The categorical scales are 
presented next and the counting rules for determining the values of the continuous variables are 
provided in the following sections. 

 
Three strategies exist for counting size drivers in COSYSMO.  They are presented here by most 
ideal to least ideal, although the strategy employed will be primarily determined by the phase of 
the life cycle in which the system is in. 

 
Strategy 1: Pure size drivers 
The ideal situation is when the size drivers are readily available to be counted because they are 
well documented in a database such as DOORS or are easily identified in system documentation.  
This gives the user the highest level of confidence when determining the number of requirements, 
interfaces, algorithms, and operational scenarios in a system.   

Step 1: Determine which of the four size drivers are relevant to the system of interest.  
Since COSYSMO calculates the functional size of the system as weighted sum of 
requirements, interfaces, algorithms, and scenarios, any combination of the four drivers is 
an acceptable input.  However, too much information presents its own challenges.  If 
duplicated information exists in two different sources, such as interfaces also being 
described as requirements, use only one of them and be sure to 

• favor the driver that provides the most reliable information; and 
• favor the driver that is most representative of systems engineering effort 

Step 2: Distribute the size driver quantities among categories of easy, nominal, and difficult.  
Since there are four size drivers and three levels of complexity for each, there user has 
twelve fields where size information can be entered. 
Step 3: Identify whether any of the effort represented by multiple size drivers is being 
double counted.  There nature of double counting frequently stems from situations where 
an interface is described by both an interface control document and a system specification.  
This can subsequently lead to the same technical effort being counted in terms of number 
of interfaces and number of system requirements, leading to an inflated count of functional 
size and thereby and overestimate of systems engineering effort.  Whenever the user 
needs to choose between one driver or the other, the following criteria should be helpful in 
deciding which will provide more reliable information: 

• favor information that comes from clearly defined project documentation that 
contains information that is easy to count 

• if requirements are not available early in the life cycle, then favor information that is 
available such as operational scenarios 

• favor information that is less likely to change over the course of the project 
• favor information that is most representative of systems engineering effort 
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Guidance on how to identify the best level of system decomposition (also referred to as “sea 
level”) at which to count requirements is discussed in section 2. a).  Guidance on how to allocate 
requirements among the three complexity categories is discussed in section 2. c).  Additional 
approaches to facilitate the size driver counting process are provided in section 2. e). and include 
the use of systems engineering tools (i.e., DOORS) and frameworks (i.e., DODAF). 
 
Strategy 2: Pure requirements 
The requirements specification document often emerges as the dominant source for functional 
size because requirements are commonly accepted vehicles for describing detailed system 
functionality.  Equivalent requirements can serve as a baseline measure of functional size which 
could otherwise be represented by the three other size drivers. 
In cases where interfaces, algorithms, or operational scenarios are not available, functional size 
can be estimated by using requirements only.  The translation of system attributes across 
easy/nominal/difficult requirements may be less reliable because the complexity aspects of the 
other size drivers may be lost in translation. 
 
Strategy 3: Equivalent requirements  
In some situations, characteristics of the system may be described in documents where 
requirements are not mentioned.  These include interface control documents, functional block 
diagrams, and operational concept documents.  In this case, interfaces, algorithms, or high-level 
operational scenarios may be the only way to quantify systems engineering effort due to the 
absence of requirements.  This situation is common during the early stages of system 
conceptualization, and ironically, the time when COSYSMO is most useful despite the high 
degree of uncertainty of the system definition.  Nevertheless, the quantities of interfaces, 
algorithms, and scenarios should be entered into the model.  Mathematically, these quantities are 
converted into equivalent requirements in the model since all parameter weights are relative to 
Nominal # of System Requirements. 
 
Despite which strategy is used, COSYSMO assumes that the systems engineering effort being 
counted has life cycle considerations that include works associated with conceptualize, develop, 
OT&E, and transition to operation. 
 

c) Deciding between Easy, Medium, and Difficult 
As described in section 1. c), the quantities for each size driver can be distributed across easy, 
nominal, and difficult complexity categories.  It is not expected that all requirements are easy nor 
are they all difficult.  The user must make an assessment of the distribution of each size driver is 
among the complexity categories based on the nature of the system.  The viewpoints provided for 
each size driver should serve as guides to make this decision but ultimately the assessment of 
complexity should be made with the impact of systems engineering effort in mind.   
 
Fore example, a system with 1,000 requirements could have 40% of them be considered easy 
because they are straightforward and have been implemented successfully before, 40% of them 
considered to be nominal because they are moderately complex and require some effort, and 
20% of them could be difficult because they are very complex and have a high degree of overlap 
with other requirements.  The distribution would then be: 
 

400 400 200 
Easy Nominal Difficult 

- Simple to implement - Familiar - Complex to implement or 
engineer 

- Traceable to source - Can be traced to source with 
some effort 

- Hard to trace to source 

- Little requirements overlap - Some overlap - High degree of 
requirements overlap 
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The model algorithm will apply the appropriate weights, from Figure 2, and calculate the 
equivalent number of requirements as follows: 
 
 400 easy requirements * 0.5 weight for easy = 200 equivalent requirements 
 400 nominal requirements * 1.0 weight for nominal = 400 equivalent requirements 
 200 difficult requirements * 5.0 weight for difficult = 1,000 equivalent requirements 
 
      TOTAL = 1,600 equivalent requirements 
 
Rather than the 1,000 original requirements defined in the system specification, COSYSMO will 
estimate systems engineering effort based on 1,600 equivalent requirements due to the 
distribution of complexity selected by the user. 
 

 
Figure 2. Size Driver Weights 

 
The same process is followed for the three other size drivers and eventually they are all 
converted into equivalent requirements. 
 

d) Adjusting nominal effort (rating cost drivers) 
After determining the size of the system by assigning values to the size drivers, the user must 
give an assessment of the system of interest with respect to the understanding, risk, 
implementation difficulty, development environment, and people capability with respect to 
systems engineering.  This is done through the cost drivers, also referred to as effort multipliers, 
because of their multiplicative effect on the systems engineering effort calculation.  Assigning 
ratings for these drivers is not as straight forward as the size drivers mentioned previously.  The 
difference is that most of the cost drivers are qualitative in nature and require subjective 
assessment in order to be rated.  
 
In addition to a definition, each driver has a corresponding rating scale that describes different 
attributes that could be used to rate the degree of impact on systems engineering effort.  Rating 
levels include: Very Low, Low, Nominal, High, Very High, and in some cases Extra High.  The 
Nominal level is assigned a multiplier of 1.0 and therefore represents no impact on the systems 
engineering effort estimate.  Levels above and below nominal are assigned multipliers above or 
below 1.0 according to their individual impact on systems engineering effort.  The incremental 
impact of each step along a multiplier’s rating scale depends on the polarity of each driver.  For 
example, the requirements understanding multiplier is defined in such a way that Very Low 
understanding will have a productivity penalty on systems engineering.  As a result, it will have a 
multiplier of greater than 1.0, such as 1.85, to reflect an 85% productivity penalty.  The rating 
scale values for the cost drivers are provided in Table 3. 
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Table 3. Rating Scale Values for Cost Drivers 

 Very 
Low Low Nominal High 

Very 
High 

Extra 
High EMR 

Requirements 
Understanding 1.85 1.36 1.00 0.77 0.60  3.08 

Architecture 
Understanding 1.62 1.27 1.00 0.81 0.65  2.49 

Level of Service 
Requirements 0.62 0.79 1.00 1.32 1.74  2.81 

Migration Complexity   1.00 1.24 1.54 1.92 1.92 
Technology Risk 0.70 0.84 1.00 1.32 1.74  2.49 
Documentation 0.82 0.91 1.00 1.13 1.28  1.56 
# and diversity of 
installations/platforms   1.00 1.23 1.51 1.86 1.86 

# of recursive levels 
in the design 0.80 0.89 1.00 1.21 1.46  1.83 

Stakeholder team 
cohesion 1.50 1.22 1.00 0.81 0.66  2.27 

Personnel/team 
capability 1.48 1.22 1.00 0.81 0.66  2.28 

Personnel 
experience/continuity 1.46 1.21 1.00 0.82 0.67  2.18 

Process capability 1.46 1.21 1.00 0.88 0.77 0.68 2.15 
Multisite coordination 1.33 1.15 1.00 0.90 0.80 0.72 1.85 
Tool support 1.34 1.16 1.00 0.85 0.73  1.84 

 
For example, the Requirements Understanding driver is worded positively since there is an effort 
savings associated with High or Very High understanding of the requirements.  This is indicated 
by multipliers of 0.77 and 0.60, respectively representing a 23% and 40% savings in effort 
compared to the nominal case.  Alternatively, the Technology Risk driver has a cost penalty of 
32% for High and 74% for Very High.  Not all rating levels apply to all of the drivers.  Again, it is a 
matter of how the drivers are defined.  The Migration Complexity driver, for example, only 
contains ratings at Nominal and higher.  The rationale behind this is that the more complex the 
legacy system migration becomes, the more systems engineering work will be required.  Not 
having a legacy system as a concern, however, does not translate to a savings in effort.  The 
absence of a legacy system is the Nominal case which corresponds to a multiplier of 1.0. 
 
The cost drivers are compared to each other in terms of their range of variability, or Effort 
Multiplier Ratio.  The EMR column in Table 3 is representative of an individual driver’s possible 
influence on systems engineering effort.  The four most influential cost drivers are: Requirements 
Understanding, Level of Service Requirements, Technology Risk, and Architecture 
Understanding.  The least influential, Documentation, # of Installations, Tool Support, and # of 
Recursive Levels in the Design were kept because users wanted to have the capability to 
estimate their impacts on systems engineering effort.  The relatively small influence of these four 
drivers does not mean that the model users felt they were insignificant.  Their presence gives 
users the ability to quantify their impact on systems engineering.  
 

e) Additional tools to facilitate size driver counting process 
Early in the system life cycle, well defined project documentation may not be available to 
organizations due to the evolutionary nature of systems.  In this case surrogate sources of data 
must be obtained or derived in order to capture leading indicators related to the four size drivers.  
Possible sources are the DoD Architecture Framework products shown in Table 4 because of 
their availability early in the program life cycle. 
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Table 4. Useful DODAF Products for COSYSMO Sizing 

Driver Name Useful Architecture Products  
Number of System 
Requirements 

The architecture development process and the requirements engineering 
process are interrelated and fairly loopy. The cost modeler can benefit 
from this iterative exercise and extract quantifiable values.  

Number of Major 
Interfaces 

As mentioned earlier, the number of interfaces in the Interface Control 
Document helps provide a ballpark figure for this size driver. DoDAF 
products, notably, SV-1 (“System Interface Description”) and SV-2 
(“System Communication Description”), the OV-3 (“Operational Information 
Exchange Matrix”) can also help in identifying the total number of major 
interfaces.  

Number of Critical 
Algorithms 

The operational and the system view have specific architectural products 
which can help in estimating the number of critical algorithms. Notably, 
from the operational view, the OV-6a, b and c (“Operational Rules, State 
Transition and Event-Trace Description”) and the SV-10a, b and c 
(“System Rules, State Transition and Event-Trace Description”) from the 
system view can help in understanding and estimating the number of 
critical algorithms.  

Number of Operational 
Scenarios 

The OV-1 “High-level Operational Concept Graphic” maps to use-cases 
when architecture products are developed using the Object-Oriented 
methodology. The total number of use-cases can be used in estimating 
this size driver.  

 
Requirements management tools such as DOORS are also helpful in populating the # of system 
requirements driver.  An additional step is needed to distribute the quantity of requirements 
across the three complexity categories; easy, nominal, and difficult.  This is a manual process 
because of the expert judgment needed to assess the relative complexity of the requirements and 
their impact on systems engineering effort. 
 
3. Model output 

 
a) Project effort distribution across activities 

The academicCOSYSMO model provides a single point person month output which requires 
some interpretation.  As show earlier in Table 1, one of the assumptions of the model is that a 
standard set of systems engineering activities are being performed throughout certain phases in 
the life cycle.  These 33 activities are distributed across 5 fundamental processes as shown in 
Table 5.  This distribution is not universal but it provides a typical spread of effort that is 
characteristic of systems engineering projects. 
 

Table 5. Effort Distribution Across ANSI/EIA 632 Fundamental Processes 

ANSI/EIA 632 Fundamental Process Typical effort

Acquisition & Supply 7% 
Technical Management 17% 
System Design 30% 
Product Realization 15% 
Technical Evaluation 31% 
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The effort distribution across fundamental processes, Px, is helpful in determining how to allocate 
the estimated systems engineering resources in COSYSMO.  The sum of the 5 fundamental 
processes equal the total systems engineering estimate, that is: 
 
 P1  + P2  + P3  + P4  + P5 = 100% 
 
Therefore, the COSYSMO estimate x can be allocated to each of the 5 processes. 
 
 x * 0.07 = effort required for P1 
 x * 0.17 = effort required for P2 
 x * 0.30 = effort required for P3 
 x * 0.15 = effort required for P4 
 x * 0.31 = effort required for P5 
 
 TOTAL = x 
 
The breakdown of effort by systems engineering process is helpful not only for planning purposes 
but also when an organization is only interested in estimating part of the systems engineering 
activities.  For example, if the systems engineering organization is only responsible for system 
design, product realization, and technical evaluation then the typical effort is: 
 

P3 + P4 + P5 = adjusted effort factor 
0.30 + 0.15 + 0.31 = adjusted effort factor 
0.76 = adjusted effort factor 

 
The initial estimate provided by COSYSMO, x, should be adjusted by a factor of 0.76 to reflect 
the absence of acquisition & supply and technical management activities assumed in the 
estimate. 
 

b) Project effort distribution across phases 
The single point person month output can also be distributed over time.  The assumption in the 
model is that a standard set of systems engineering activities are being performed throughout 
certain phases in the life cycle.  These 4 life cycle phases are: Conceptualize, Develop, 
Operational Test & Evaluation, and Transition to Operation as shown in  
 
Table 6.  This distribution is not universal but it provides a typical spread of effort that is 
characteristic of systems engineering projects. 
 

Table 6. Systems Engineering Effort Distribution % Across ISO/IEC 15288 Phases 
Conceptualize Develop Operational Test & Evaluation Transition to Operation 

23 35 28 14 
 

The distribution across life cycle phases, Ax, is helpful in determining how to allocate the 
estimated systems engineering resources in COSYSMO.  The sum of the 4 life cycle phases 
equal the total systems engineering estimate, that is: 

 
A1  + A2  + A3  + A4 = 100% 

 
Therefore, the COSYSMO estimate x can be allocated across each of the 4 life cycle phases. 
 
 x * 0.23 = effort needed in A1 
 x * 0.35 = effort needed in A2 
 x * 0.28 = effort needed in A3 
 x * 0.14 = effort needed in A4 
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 TOTAL = x 
 
The breakdown of effort by systems engineering life cycle phase is helpful not only for planning 
purposes but also when an organization is only interested in estimating part of the systems 
engineering life cycle.  For example, if the systems engineering organization is only responsible 
for the conceptualization and development of the system then the typical effort is: 
 

A1 + A2 = adjusted effort factor 
0.23 + 0.35 = adjusted effort factor 
0.58 = adjusted effort factor 

 
The initial estimate provided by COSYSMO, x, should be adjusted by a factor of 0.58 to reflect 
the absence of the operational test & evaluation and transition to operation life cycle phases 
assumed in the estimate. 
 

c) Potential overlap with COCOMO II 
The danger with model overlap is that it can lead to unnecessary double-counting of effort 
because it is expected that systems engineering and software engineering are highly coupled in 
most organizations.  On the surface, COCOMO II and COSYSMO appear to be similar.  
However, there are fundamental differences between them that should be highlighted.  These are 
apparent when the main features of the model are considered: 

• Sizing.  COCOMO II uses software size metrics while COSYSMO uses metrics at a level 
of the system that incorporates both hardware and software 

• Life cycle.  COCOMO II, based on a software tradition, focuses exclusively on software 
development life cycle phases defined by MBASE6 while COSYSMO follows the system 
life cycle provided by ISO/IEC 15288 

• Cost Drivers.  Each model includes drivers that model different phenomena.  The overlap 
between the two models is minimal since very few of the COCOMO II parameters are 
applicable to systems engineering  

 
Other differences are highlighted in Table 7. 
 

Table 7. Differences between COCOMO II and COSYSMO 

 COCOMO II COSYSMO 
Estimates Software development Systems engineering 
Estimates size via Thousands of Software Lines 

of Code (KSLOC), Function 
Points, or Application Points 

Requirements, Interfaces, 
Algorithms, and Operational 
Scenarios 

Life cycle phases MBASE/RUP Phases: (1) 
Inception, (2) elaboration, (3) 
construction, and (4) 
transition 

ISO/IEC 15288 Phases: (1) 
Conceptualize, (2) Develop, 
(3) Operation, Test, and 
Evaluation, (4) Transition to 
Operation, (5) Operate 
Maintain or Enhance, and (6) 
Replace or dismantle. 

Form of the model 1 size factor, 5 scale factors, 
and 18 effort multipliers 

4 size factors, 1 scale factor,    
14 effort multiplier 

Represents 
diseconomy of scale 
through 

Five scale factors One exponential system 
factor 

 
 
                                                 
6 Model Based System Architecting and Software Engineering 
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Despite the differences between the two models there is potential overlap between the two 
whenever the models are being used in parallel to estimate the effort involved with delivering a 
software-intensive system.  Part of understanding the overlap between the two models involves 
deciding which activities are considered “system engineering” and which are considered 
“software engineering/development” and how each estimation model accounts for these activities.   
 
COCOMO II is designed to estimate the software effort associated with the analysis of software 
requirements and the design, implementation, and test of software.  COSYSMO estimates the 
system engineering effort associated with the development of the software system concept, 
overall software system design, implementation and test.  The COCOMO II estimate of the 
software effort will surely account for the additional effort required by any additional testing of the 
software system; at the same time, the COSYSMO effort will account for additional test 
development and management since the systems engineers are required to perform additional 
validation and verification of the system.  Either model can account for this effort based on how 
users wish to allocate the testing activity. Each organization’s unique relationship between these 
two disciplines needs to be reconciled when using COSYSMO and COCOMO II together.  One 
approach for accomplishing this is to examine the Work Breakdown Structures of each discipline. 
  
COSYSMO uses the WBS defined in EIA/ANSI 632 while COCOMO II uses the one defined in 
MBASE/RUP.  The typical effort distribution of a software-intensive system is provided in Table 8 
together with the activities that could potentially overlap when using both models during an effort 
estimation exercise.  The numbers in the cells represent the typical percentage of effort spent on 
each activity during a certain phase of the software development life cycle as defined by 
COCOMO II.  Each column adds up to 100 percent. 

Table 8. COCOMO II and COSYSMO Overlaps 

 Software Development  Project Stage Inception Elaboration Construction Transition 
Management 14 12 10 14 
Environment/CM 10 8 5 5 
Requirements 38 18 8 4 
Design 19 36 16 4 
Implementation 8 13 34 19 
Assessment 8 10 24 24 
Deployment 3 3 3 30 

 
COCOMO II only  

COSYSMO  
Possible COCOMO II/COSYSMO overlap  

 
The scope of COCOMO II includes the elaboration and construction activities generally defined 
as software development.  The gray cells indicate the systems engineering activities that are 
estimated in COSYSMO.  The diagonally shaded cells indicate the COCOMO II/COSYSMO 
overlap activities that may be double counted when using the models simultaneously.  The exact 
amount of effort being double counted will vary for each organization based on the way they 
define systems engineering relative to software engineering. 
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4. Local calibration 
The best way to ensure that COSYSMO is accurate to your context is to perform a local 
calibration.  This involves collecting data on completed programs that have a significant systems 
engineering component and using it to calibrate the model constant, A, described in section 1. b). 

 
a) Data collection 

The focus is on collecting data for completed programs since it is necessary to know how much 
systems engineer effort was actually expended on a program.  This information – together with 
the total # of system requirements, # of interfaces, # of algorithms, and # of operational scenarios 
– is used to calibrate the model based on the historical performance of the organization.  A data 
collection form is available for download at http://www.valerdi.com/cosysmo in the “Downloads” 
section.  It is recommended that the data collection be done in person hours since this is a 
uniformly accepted metric.  If effort data is maintained in person months then the user must make 
sure that every project has interpreted person months as 152 person hours.  This is an important 
issue for European users since person months are usually considered to be 138 person hours.  In 
which case, 1 European person month = 1.1 U.S. person months. 
 

b) Measurement process 
The recommended systems engineering cost estimation life cycle for COSYSMO is shown in 
Figure 3.  Several verification and validation opportunities exist along the way to tailor the model 
to an organization. 
 

 
Figure 3. Estimation Life Cycle 

The success of this process is dependent on the identification, training, and consistency of an 
internal COSYSMO champion throughout the piloting and institutionalization phases.  
Organizations that have identified a committed, reliable, authorized, and knowledgeable 
champion have been successful in adopting COSYSMO and tailoring it to their needs. 
 

c) Data analysis 
Once data on completed programs has been collected, the simplest way to perform a local 
calibration is to use the Calico tool that accompanies the SystemStar implementation of 
COSYSMO which is developed by SoftStar systems.  For more information visit 
http://www.cosysmo.com. 
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d) Modification of model spreadsheet 
Upon completion of the local calibration, the new value for A can be entered into the 
academicCOSYSMO spreadsheet in cell H28.  The current value of the industry calibration is 
38.55 and assumes that the calibration has been done in person hours.  Alternatively, if the 
calibration was done in person months then the value entered in cell H28 must be multiplied by 
152 (this is done to offset the subsequent division by 152 embedded in the algorithm).  
Regardless of whether the value of A is entered as months (and multiplied by 152) or hours, 
academicCOSYSMO will provide the estimate in person months in order to be compatible with 
other cost estimation models. 
 

e) Customization 
In addition to the local calibration, further opportunities exist for tailoring the model to a specific 
organization.  These include: 

 Adjustment of (Dis)economy of scale constant, E 
 Clarification of size driver counting rules (i.e., sea level) and system-of-interest 
 Mapping to internal Work Breakdown Structure  
 Adjustment of life cycle scope 
 Distribution of effort over time 
 Addition of new cost or size drivers 

 
 
 


