
This work has been funded by the MIT Lean Aerospace Initiative Consortium, the USC Center for
Software Engineering Corporate Affiliates, and the US Air Force Office Space & Missile Systems
Center of the Chief Engineer.

academicCOSYSMO User Manual
A Practical Guide for Industry & Government

Version 1.0
July 2006

By:
Ricardo Valerdi
MIT Lean Aerospace Initiative
rvalerdi@mit.edu

Page 2 of 28

Table of Contents

1. Model definition, scope, and assumptions ...4

a) Definition of key terms .. 5
b) COSYSMO Algorithm ... 6
c) Size Drivers .. 6
d) Cost Drivers .. 8
e) Work Breakdown Structure... 15

2. Model Usage..16
a) Determining size via REQ, INTF, ALG, SCN ... 16
b) How to avoid double counting between size drivers .. 19
c) Deciding between Easy, Medium, and Difficult .. 20
d) Adjusting nominal effort (rating cost drivers) .. 21
e) Additional tools to facilitate size driver counting process ... 22

3. Model output ..23
a) Project effort distribution across activities .. 23
b) Project effort distribution across phases .. 24
c) Potential overlap with COCOMO II... 25

4. Local calibration...27
a) Data collection .. 27
b) Measurement process .. 27
c) Data analysis .. 27
d) Modification of model spreadsheet... 28
e) Customization... 28

Page 3 of 28

Acknowledgements
The information in this document is representative of the work accomplished
since 2001 by the COSYSMO Working Group in conjunction with the INCOSE
Measurement Working Group. The motivation behind the first implementation of
the COSYSMO model came from Gary Thomas (Raytheon- Garland, TX). Other
individuals who have contributed to this document are: Tony Hart (General
Dynamics – Pittsfield, MA), Joe Emerick (Lockheed Martin – Gaithersburg, MD),
and Chris Miller (SSCI – Herndon, VA).

Page 4 of 28

1. Model definition, scope, and assumptions
The Constructive Systems Engineering Cost Model (COSYSMO) is a model that can help people
reason about the economic implications of systems engineering on projects. Similar to its
predecessor, COCOMO II1, it was developed at the University of Southern California as a
research project2 with the help of BAE Systems, General Dynamics, Lockheed Martin, Northrop
Grumman, Raytheon, and SAIC. COSYSMO follows a parametric modeling approach used to
estimate the quantity of systems engineering labor, in terms of person months, required for the
conceptualization, design, test, and deployment of large-scale software and hardware projects.
User objectives include the ability to make Proposal estimates, investment decisions, budget
planning, project tracking, tradeoffs, risk management, strategy planning, and process
improvement measurement.

The academicCOSYSMO model is a simple EXCEL implementation that should be compared to
other quoting methods and eventually calibrated to reflect the organization’s definitions, scope of
systems engineering activities, and life cycle coverage. The parameters in the model are defined
in sections 1. c) and 1. d), followed by a description of the work breakdown structure used in the
model which is driven by the ANSI/EIA 632 Processes for Engineering a System3 and described
in sections 1. d) and 3. a). The scope of COSYSMO is defined by system life cycle phases
inspired by the ISO/IEC 15288 Systems Engineering – System Life Cycle Processes4 standard
described in section 3. b).

Before users begin to work with COSYSMO, they should be aware of the inherent assumptions
embedded in the model. The most important assumptions are that the user performing an
estimate with COSYSMO has a basic understanding of: (1) the definitions of the eighteen drivers,
(2) the associated counting rules for the size drivers, (3) the output of the model, and (4) how
COSYSMO relates to the general systems engineering context (i.e., process, labor categories) in
their organization. Beyond the assumptions surrounding the user, the model has additional
embedded assumptions that reflect its ancestry. These assumptions are that:

 the organization using the model defines systems engineering in a way that is compatible
with the INCOSE definition (see section 1. a) for definition)

 a predetermined set of systems engineering activities and life cycle phases exist in the
organization and these are closely aligned with the two aforementioned standards

 the model will be used to estimate effort from the contractor perspective
 the organization, not its subcontractors, is performing a majority of the systems

engineering work
 reuse of requirements and interfaces is minimal
 the organization using the model develops systems for the defense or aerospace domain

similar to those developed by the six organizations that participated in the industry
calibration

The implications of these assumptions are significant and, if not carefully considered, can lead to
insignificant results.

1 Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer,

D. J. and Steece, B., Software Cost Estimation With COCOMO II, Prentice Hall, 2000.
2 Valerdi, R., “The Constructive Systems Engineering Cost Model (COSYSMO),” unpublished

PhD Dissertation, University of Southern California, May 2005.
3 ANSI/EIA-632-1988 Processes for Engineering a System, 1999.
4 ISO/IEC 15288:2002(E) Systems Engineering - System Life Cycle Processes, 2002.

Page 5 of 28

a) Definition of key terms

Cost driver – see “Effort Multiplier”

Cost Estimating Relationship – a mathematical expression that represents the relationship
between the model’s independent variables (size drivers and cost drivers) and the dependent
variable (person months).

Effort Multiplier – one of fourteen parameters in the model, also know as a cost drivers, that have
a multiplicative effect on systems engineering effort either in the way of an effort savings or effort
penalty. (also see “Rating”)

Effort Multiplier Ratio – the ratio of the highest valued rating multiplier and the lowest valued
rating multiplier for an individual cost driver. This is an indication of the swing between the effort
savings and effort penalty associated with a driver and is used to compare the relative
significance between drivers.

Life cycle – a set of six phases which describe the typical evolution of a system in which systems
engineers perform work. COSYSMO uses a life cycle inspired by the ISO/IEC 15288 standard.

Person Month – a generally accepted unit of measure for people effort which usually equals 152
person hours. It is the dependent variable for the COSYSMO model.

PRED – the criterion for measuring predictive accuracy of cost models, usually expressed in
three different ranges: 20%, 25%, and 30%. A model with perfect predictive ability would have a
PRED(20) of 100% meaning that it would estimate within 20% of the actual effort, 100% of the
time.

Rating scale – an ordinal scale to represent the different attributes of a cost driver. It can have
anywhere between four and seven rating levels ranging from “Very Low” to “Extra High” and
whose default value is “Nominal”.

Rating – the value assigned for a particular cost driver by the model user based on their
assessment of the impact of that driver on the systems engineering effort estimate.

Size drivers – one of four parameters in the model which have an additive effect on systems
engineering effort.

Systems Engineering – The formal INCOSE definition of SE is “an interdisciplinary approach and
means to enable the realization of successful systems. It focuses on defining customer needs
and required functionality early in the development cycle, documenting requirements, then
proceeding with design synthesis and system validation while considering the complete problem.”
See definitions for “WBS” and “Life Cycle” for the activities that are included in SE and the scope
of SE life cycle as used in COSYSMO.

Work Breakdown Structure – the set of activities that represent specific tasks that, in this case,
are performed by systems engineers and are included in COSYSMO. The thirty three activities
described in the ANSI/EIA 632 standard define the scope of COSYSMO and its estimate.

Page 6 of 28

b) COSYSMO Algorithm
Each parameter in the COSYSMO Algorithm is part of the Cost Estimating Relationship (CER)
that was defined by systems engineering experts.

∏∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1
,,,,,,)(

j
j

E

k
kdkdknknkekeNS EMwwwAPM

Where:
PMNS = effort in Person Months (Nominal Schedule)
A = calibration constant derived from historical project data
k = {REQ, IF, ALG, SCN}
wx = weight for “easy”, “nominal”, or “difficult” size driver

xΦ = quantity of “k” size driver
E = represents diseconomies of scale
EM = effort multiplier for the jth cost driver. The geometric product results in an overall effort
adjustment factor to the nominal effort.

The size of the system is the weighted sum of the REQ, IF, ALG, and SCN parameters and
represents the additive part of the model while the EM factor is the product of the 14 effort
multipliers and represents the multiplicative part of the model. This algorithm is built into the
academicCOSYSMO spreadsheet in cell E29 where the systems engineering person month
estimate is displayed.

Detailed definitions for these parameters are provided in the following sections.

c) Size Drivers
The size drivers should be entered first because they require the user to think about the
quantitative parameters that determine size of the system in terms of systems engineering. The
value of the size drivers can be entered in the yellow cells show below. The spreadsheet will
keep a running total of the number of equivalent requirements in cell F9 which is a weighted sum
of the four size drivers.

Although there are twelve available cells for data entry, an estimate can be obtained by entering
information into only one cell. This is not recommended because the absence of project size
drivers typically means that incomplete information exists which is not a good time to do an
estimate.

Page 7 of 28

Number of System Requirements
This driver represents the number of requirements for the system-of-interest at a specific level of
design. The quantity of requirements includes those related to the effort involved in system
engineering the system interfaces, system specific algorithms, and operational scenarios.
Requirements may be functional, performance, feature, or service-oriented in nature depending
on the methodology used for specification. They may also be defined by the customer or
contractor. Each requirement may have effort associated with it such as verification and
validation, functional decomposition, functional allocation, etc. System requirements can typically
be quantified by counting the number of applicable shalls/wills/shoulds/mays in the system or
marketing specification. Note: some work is involved in decomposing requirements so that they
may be counted at the appropriate system-of-interest.

Easy Nominal Difficult
- Simple to implement - Familiar - Complex to implement or

engineer
- Traceable to source - Can be traced to source with

some effort
- Hard to trace to source

- Little requirements overlap - Some overlap - High degree of
requirements overlap

Number of System Interfaces
This driver represents the number of shared physical and logical boundaries between system
components or functions (internal interfaces) and those external to the system (external
interfaces). These interfaces typically can be quantified by counting the number of external and
internal system interfaces among ISO/IEC 15288-defined system elements.

Easy Nominal Difficult
- Simple message - Moderate complexity - Complex protocol(s)
- Uncoupled - Loosely coupled - Highly coupled
- Strong consensus - Moderate consensus - Low consensus
- Well behaved - Predictable behavior - Poorly behaved

Number of System-Specific Algorithms
This driver represents the number of newly defined or significantly altered functions that require
unique mathematical algorithms to be derived in order to achieve the system performance
requirements. As an example, this could include a complex aircraft tracking algorithm like a
Kalman Filter being derived using existing experience as the basis for the all aspect search
function. Another example could be a brand new discrimination algorithm being derived to identify
friend or foe function in space-based applications. The number can be quantified by counting the
number of unique algorithms needed to realize the requirements specified in the system
specification or mode description document.

Easy Nominal Difficult
- Algebraic - Straight forward calculus - Complex constrained

optimization; pattern
recognition

- Straightforward structure - Nested structure with
decision logic

- Recursive in structure
 with distributed control

- Simple data - Relational data - Noisy, ill-conditioned data
- Timing not an issue - Timing a constraint - Dynamic, with timing and

uncertainty issues
- Adaptation of library-based
solution

- Some modeling involved - Simulation and modeling
involved

Page 8 of 28

Number of Operational Scenarios
This driver represents the number of operational scenarios that a system must satisfy. Such
scenarios include both the nominal stimulus-response thread plus all of the off-nominal threads
resulting from bad or missing data, unavailable processes, network connections, or other
exception-handling cases. The number of scenarios can typically be quantified by counting the
number of system test thread packages or unique end-to-end tests used to validate the system
functionality and performance or by counting the number of use cases, including off-nominal
extensions, developed as part of the operational architecture.

Easy Nominal Difficult
- Well defined - Loosely defined - Ill defined
- Loosely coupled - Moderately coupled - Tightly coupled or many

dependencies/conflicting
requirements

- Timelines not an issue - Timelines a constraint - Tight timelines through
scenario network

- Few, simple off-nominal
threads

- Moderate number or
complexity of off-nominal
threads

- Many or very complex off-
nominal threads

d) Cost Drivers

The cost drivers in the model represent the multiplicative part of the model introduced. These
drivers are also referred to as effort multipliers since they affect the entire systems engineering
effort calculation in a multiplicative manner. Assigning ratings for these drivers is not as straight
forward as the size drivers mentioned previously. The difference is that most of the cost drivers
are qualitative in nature and require subjective assessment in order to be rated. Provide a rating
for each of the cost drivers that apply to your project/system of interest by using the drop-down
box in the yellow cells of the spreadsheet. As values are selected, the cells will change colors to
represent either a cost savings (green) or a cost penalty (red).

The model displays the composite effort multiplier in cell D25 which is a running total of the
product of the fourteen cost drivers. It is an indicator of the overall environment in which the
systems engineering is being performed.

Page 9 of 28

1. Requirements Understanding

This cost driver rates the level of understanding of the system requirements by all
stakeholders including the systems, software, hardware, customers, team members, users,
etc. Primary sources of added system engineering effort are unprecedented systems,
unfamiliar domains, or systems whose requirements are emergent with use.

Very Low Low Nominal High Very High
Poor: emergent
requirements or
unprecedented
systems

Minimal: many
undefined areas

Reasonable: some
undefined areas

Strong: few
undefined areas

Full: understanding
of requirements,
familiar systems

2. Architecture Understanding

This cost driver rates the relative difficulty of determining and managing the system
architecture in terms of platforms, standards, components (COTS, GOTS, NDI, new),
connectors (protocols), and constraints. This includes tasks like systems analysis, tradeoff
analysis, modeling, simulation, case studies, etc.

Very low Low Nominal High Very High
Poor
understanding
of architecture
and COTS,
unprecedented
system

Minimal
understanding of
architecture and
COTS, many
unfamilar areas

Reasonable
understanding of
architecture and
COTS, some
unfamiliar areas

Strong
understanding of
architecture and
COTS, few
unfamiliar areas

Full
understanding of
architecture,
familiar system
and COTS

>6 level WBS 5-6 level WBS 3-4 level WBS 2 level WBS

3. Level of Service Requirements
This cost driver rates the difficulty and criticality of satisfying the ensemble of level of service
requirements, such a security, safety, response time, interoperability, maintainability, Key
Performance Parameters (KPP’s), the “ilities”, etc.

 Very low Low Nominal High Very High
Difficulty Simple; single

dominant KPP
Low, some
coupling
among KPPs

Moderately
complex,
coupled KPPs

Difficult,
coupled KPPs

Very complex,
tightly coupled
KPPs

Criticality Slight
inconvenience

Easily
recoverable
losses

Some loss High financial
loss

Risk to human
life

4. Migration Complexity

This cost driver rates the extent to which the legacy system affects the migration complexity,
if any. Legacy systems components, databases, workflows, environments, etc., may affect
the new system implementation due to new technology introductions, planned upgrades,
increased performance, business process reengineering, etc.

 Nominal High Very High Extra High

Legacy
contractor

Self; legacy
system is well
documented.
Original team
largely available

Self; original
development team
not available;
most
documentation
available

Different
contractor; limited
documentation

Original contractor
out of business;
no documentation
available

Effect of
legacy

system on

Everything is
new; legacy
system is

Migration is
restricted to
integration only

Migration is
related to
integration and

Migration is
related to
integration,

Page 10 of 28

new
system

completely
replaced or non-
existent

development development,
architecture and
design

5. Technical Risk

This represents the maturity, readiness, and obsolescence of the technology being
implemented. Immature or obsolescent technology will require more Systems Engineering
effort.

Viewpoint Very low Low Nominal High Very High
Lack of
Maturity

Technology
proven and
widely used
throughout
industry

Proven through
actual use and
ready for
widespread
adoption

Proven on pilot
projects and
ready to roll-out
for production
jobs

Ready for pilot
use

Still in the
laboratory

Lack of
readiness

Mission proven
(TRL 9)

Concept
qualified (TRL
8)

Concept has
been
demonstrated
(TRL 7)

Proof of
concept
validated (TRL
5 & 6)

Concept
defined (TRL 3
& 4)

Obsolescence Technology is
the state of the
practice,
Emerging
technology could
compete in
future

Technology is
stale. New and
better
technology is
on the horizon
in near -term

Technology is
outdated and
use should be
avoided in new
system. Spare
parts supply is
scarce.

6. Documentation match to life cycle needs

This represents the formality and detail of the documentation required to be formally
delivered based upon the life cycle needs of the system.

Viewpoint Very low Low Nominal High Very High
Formality General goals,

stories
Broad
guidance,
flexibility is
allowed

Risk-driven
degree of
formality

Partially
streamlined
process,
largely
standards-
driven

Rigorous,
follows
strict
standards
and
requirement
s

Detail Minimal or no
specified
documentation
and review
requirements
relative to life
cycle needs

Relaxed
documentation
and review
requirements
relative to life
cycle needs

Risk-driven
degree of
formality,
amount of
documentation
and reviews in
sync and
consistent with
life cycle needs
of the system

High amounts
of
documentation,
more rigorous
relative to life
cycle needs,
some revisions
required

Extensive
documentat
ion and
review
requirement
s relative to
life cycle
needs,
multiple
revisions
required

Page 11 of 28

7. Number and Diversity of Installations or Platforms

The number of different platforms that will host the system and number of installations
required. The complexity of the operating environment (space, sea, land, mobile, portable,
information assurance / security) must be considered in weighting your answer. In a wireless
network environment it could be the number of unique installation sites and the number of or
types of fixed clients, mobile clients, and servers. The number of platforms being
implemented should be added to the number being phased out (dual count), in order to
account for total life cycle labor.

Viewpoint Nominal High Very High Extra High
Sites &
installations

Single
installation site or
configuration

2-3 site or
diverse
installation
configurations

4-5 sites or
diverse
installation
configurations

> 6 sites or
diverse
installation
configuration

Operating
environment

Existing facility
meets all known
environmental
operating
requirements

Moderate
environmental
constraints.
Controlled
environment
HVAC
constraints or
electrical power
constraints

Ruggedized
mobile land-
based
requirements.
Some
information
security
requirements.
Coordination
several
regulatory or
cross functional
agencies
required.

Harsh
environment
(space, sea,
airborne),
sensitive
information
security
requirements.
Coordination
between 3 or
more regulatory
or cross
functional
agencies
required.

< 3 types of
platforms being
installed and or
being phased out
or replaced

4-7 types of
platforms being
installed and or
being phased out
or replaced.

8-10 types of
platforms being
installed and or
being phased out
or replaced

> 10 types of
platforms being
installed and or
being phased out
or replaced

Homogeneous
platform

Compatible
platforms

Heterogeneous,
but compatible
platform

Heterogeneous,
incompatible
platforms

Platforms Typically
networked using
a single industry
standard protocol

Typically
networked using
a single industry
standard protocol
and multiple
operating
systems

Typically network
using mix of
industry standard
protocols and
proprietary
protocols with
single operating
systems

Typically
networked using
a mix of industry
standard
protocols and
proprietary
protocols with
multiple
operating
systems.

Page 12 of 28

8. Number of Recursive Levels in the Design

The number of levels of design related to the system-of-interest (as defined by ISO/IEC
15288) and the amount of required SE effort for each level.

Viewpoint Very Low Low Nominal High Very High
Number
of levels

1 2 3 to 5 6 to 7 > 7

Required
SE Effort

Focused
on single
product

Some
vertical and
horizontal
coordination

More complex
interdependencies
coordination and
trade-off analysis

Very complex
interdependencies
coordination and
trade-off analysis

Extremely complex
interdependencies
coordination and
trade-off analysis

9. Stakeholder Team Cohesion

This represents a multi-attribute parameter which includes leadership, shared vision and
diversity of stakeholders, approval cycles, group dynamics, IPT framework, team dynamics
and amount of change in responsibilities. It further represents the heterogeneity in
stakeholder community of the end users, customers, implementers, and development team.

Viewpoint Very Low Low Nominal High Very High
Culture Stake holders

with diverse
domain
experience,
task nature,
language,
culture,
infrastructure
of highly
heterogeneou
s stakeholder
communities

Heterogeneou
s stakeholder
community.
Some
similarities in
language and
culture.

Shared
project
culture.

Strong team
cohesion and
project
culture.
Multiple
similarities in
language and
expertise.

Virtual
homogeneous
stake holder
communities.
Institutionalize
d project
culture.

Compatibilit
y

Highly
conflicting
organizational
objectives

Converging
organizational
objectives

Compatible
organization
al objectives

Clear roles
and
responsibilitie
s.

Strong mutual
advantage to
collaboration.

Familiarity Unfamiliar-
never worked
together

Willing to
collaborate-
little
experience

Some
familiarity

High level of
familiarity

Extensive
successful
collaboration

10. Personnel Experience and Continuity

The applicability and consistency of the staff at the initial stage of the project with respect to
the domain, customer, user, technology, tools, etc.

Viewpoint Very Low Low Nominal High Very High
Experience Less than 2

months
1 yr
continuous
experience or
other similar
technical
tasks in
similar job

3 years of
continuous
experience

5 years of
continuous
experience

10 years of
continuous
experience

Annual
Turnover

48% 24% 12% 6% 3%

Page 13 of 28

11. Process Capability

The consistency and effectiveness of the project team at performing SE processes. This may
be based on assessment ratings from a published process model (e.g., CMMI, EIA-731, SE-
CMM, ISO/IEC15504). It can alternatively be based on project team behavioral
characteristics, if no assessment has been performed.

 Very Low Low Nominal High Very High Extra High

A
ss

es
sm

en
t

R
at

in
g

Level 0 (if
continuous
model)

Level 1 Level 2 Level 3 Level 4 Level 5

Pr
oj

ec
t T

ea
m

 B
eh

av
io

ra
l C

ha
ra

ct
er

is
tic

s

Ad Hoc
approach to
process
performance

Performed
SE process,
activities
driven only
by immediate
contractual or
customer
requirements,
SE focus
limited

Managed SE
process,
activities
driven by
customer and
stakeholder
needs in a
suitable
manner, SE
focus is
requirements
through
design,
project-
centric
approach –
not driven by
organizational
processes

Defined SE
process,
activities
driven by
benefit to
project, SE
focus is
through
operation,
process
approach
driven by
organizational
processes
tailored for
the project

Quantitatively
Managed SE
process,
activities
driven by SE
benefit, SE
focus on all
phases of the
life cycle

Optimizing
SE process,
continuous
improvement,
activities
driven by
system
engineering
and
organizational
benefit, SE
focus is
product life
cycle &
strategic
applications

SE
M

P
So

ph
is

tic
at

io
n

Management
judgment is
used

SEMP is
used in an
ad-hoc
manner only
on portions of
the project
that require it

Project uses
a SEMP with
some
customization

Highly
customized
SEMP exists
and is used
throughout
the
organization

The SEMP is
thorough and
consistently
used;
organizational
rewards are
in place for
those that
improve it

Organization
develop best
practices for
SEMP; all
aspects of the
project are
included in
the SEMP;
organizational
rewards exist
for those that
improve it

Page 14 of 28

12. Multisite Coordination

Location of stakeholders, team members, resources, corporate collaboration barriers.

 Very Low Low Nominal High Very High Extra High

C
ol

lo
ca

tio
n

International,
severe time
zone impact

Multi-city
and multi-
national,
considerable
time zone
impact

Multi-city or
multi-
company,
some time
zone effects

Same city or
metro area

Same building
or complex,
some co-
located
stakeholders or
onsite
representation

Fully co-
located
stakeholders

C
om

m
un

ic
at

io
ns

Some
phone, mail

Individual
phone, FAX

Narrowband
e-mail

Wideband
electronic
communication

Wideband
electronic
communication,
occasional
video
conference

Interactive
multimedia

C
or

po
ra

te

co
lla

bo
ra

tio
n

ba
rr

ie
rs

Severe
export and
security
restrictions

Mild export
and security
restrictions

Some
contractual
&
Intellectual
property
constraints

Some
collaborative
tools &
processes in
place to
facilitate or
overcome,
mitigate
barriers

Widely used
and accepted
collaborative
tools &
processes in
place to
facilitate or
overcome,
mitigate
barriers

Virtual team
environment
fully
supported
by
interactive,
collaborative
tools
environment

13. Tool Support

Coverage, integration, and maturity of the tools in the Systems Engineering environment.

Very low Low Nominal High Very High
No SE tools Simple SE tools,

little integration
Basic SE tools
moderately
integrated
throughout the
systems
engineering
process

Strong, mature
SE tools,
moderately
integrated with
other disciplines

Strong, mature
proactive use of
SE tools
integrated with
process, model-
based SE and
management
systems

Page 15 of 28

e) Work Breakdown Structure

The definition of systems engineering used in COSYSMO hinges on the 33 activities defined in
the ANSI/EIA 632 standard shown in Table 1. These activities are rolled up into Process
Categories and Fundamental Processes. The latter categories will be used later as a general
framework for categorizing systems engineering effort.

Table 1. Systems Engineering Work Breakdown Structure per ANSI/EIA 632

Fundamental
Processes

Process Categories Activities

Supply Process (1) Product Supply Acquisition
and Supply Acquisition Process (2) Product Acquisition, (3) Supplier Performance

Planning Process (4) Process Implementation Strategy, (5) Technical
Effort Definition, (6) Schedule and Organization, (7)
Technical Plans, (8)Work Directives

Assessment Process (9) Progress Against Plans and Schedules, (10)
Progress Against Requirements, (11) Technical
Reviews

Technical
Management

Control Process (12) Outcomes Management, (13) Information
Dissemination

Requirements
Definition Process

(14) Acquirer Requirements, (15) Other Stakeholder
Requirements, (16) System Technical
Requirements System

Design Solution Definition
Process

(17) Logical Solution Representations, (18) Physical
Solution Representations, (19) Specified
Requirements

Implementation
Process

(20) Implementation
Product
Realization Transition to Use

Process
(21) Transition to use

Systems Analysis
Process

(22) Effectiveness Analysis, (23) Tradeoff Analysis,
(24) Risk Analysis

Requirements
Validation Process

(25) Requirement Statements Validation, (26)
Acquirer Requirements, (27) Other Stakeholder
Requirements, (28) System Technical
Requirements, (29) Logical Solution
Representations

System Verification
Process

(30) Design Solution Verification, (31) End Product
Verification, (32) Enabling Product Readiness

Technical
Evaluation

End Products
Validation Process

(33) End products validation

Page 16 of 28

2. Model Usage

a) Determining size via REQ, INTF, ALG, SCN
Requirements
Different systems will exhibit different levels of requirements decomposition depending on the
application domain, customer’s ability to write good system requirements, and the functional size
of the system. The following rules should increase the reliability of requirements counting by
different organizations on different systems regardless of their application domain:

1. Determine the system of interest. For an airplane, the system of interest may be the
avionics subsystem or the entire airplane depending on the perspective of the
organization interested in estimating systems engineering. This key decision needs to be
made early on to determine the scope of the COSYSMO estimate and identify the
requirements that are applicable for the chosen system.

2. Decompose system objectives, capabilities, or measures of effectiveness into
requirements that can be tested, verified, or designed. The decomposition of
requirements must be performed by the organization using COSYSMO because the initial
set of requirements provided by the customer may not be representative of the actual
systems engineering effort required for the contractor to deliver the system. The level of
decomposition of interest for COSYSMO is the level in which the system will be designed
and tested; which is equivalent to the TYPE A, System/Segment Specification (MIL-STD
490-A 1985). For some organizations, these are referred to as “systems engineering
requirements” because they reflect the level at which systems engineers do their job.

3. Provide a graphical or narrative representation of the system of interest and how it
relates to the rest of the system. This step focuses on the hierarchical relationship
between the system elements. This information can help describe the size of the system
and its levels of design. It serves as a sanity check for the previous two steps.

4. Count the number of requirements in the system/marketing specification or the
verification test matrix for the level of design in which systems engineering is
taking place in the desired system of interest. The focus of the counted requirements
needs to be for systems engineering. Lower level requirements may not be applicable if
they have no effect on systems engineering. Requirements may be counted from the
Requirements Verification Trace Matrix (RVTM) – or an equivalent construct – that is
used for testing system requirements. The same rules apply as before: all counted
requirements must be at the same design or bid level and lower level requirements must
be disregarded if they do not influence systems engineering effort.

5. Determine the volatility, complexity, and reuse of requirements. Once the quantity
of requirements has been determined, the three adjustment factors can be applied.
Currently three complexity factors have been determined: easy, nominal, and difficult.
These weights for these factors were determined using expert opinion through the use of
a Delphi survey. The volatility and reuse factors are optional and depend on the version
of COSYSMO implementation being used.

The objective of the five steps is to lead users down a consistent path of similar logic when
determining the number of system requirements for the purposes of estimating systems
engineering effort in COSYSMO. It has been found that the level of decomposition described in
step #2 may be the most volatile step as indicated by the data collected thus far. To alleviate
this, a framework for software use case decomposition5 was adopted. The basic premise behind
the framework is that different levels exist for specific system functions. Choosing the appropriate
level can provide a focused basis for describing the customer and developer needs. A metaphor
is used to describe four levels: sky level, kite level, sea level, and underwater level. The sea level
goals represent a user level task that is the target level for counting requirements in COSYSMO.

5 Cockburn, A., Writing Effective Use Cases, Boston, Addison-Wesley, 2001.

Page 17 of 28

Interfaces
Similar challenges of decomposition exist for the # of interfaces driver because interfaces are
often defined at multiple levels of the system hierarchy. The target level for counting interfaces
involves the following rules:

1. Focus on technical interfaces only. Other parameters in the model address
organizational interfaces.

2. Identify the interfaces that involve systems engineering for your system of interest.
Counting interfaces at the integrated circuit or software subroutine level is often too low.
Sometimes there may be multiple levels of interfaces connecting higher system
elements, lower system elements, and elements at the same level of the system
hierarchy. Identify which level is driving the amount of systems engineering effort in your
organization and focus on it.

3. Determine the number of unique interface types. If twenty interfaces exist but there
are only two types of unique interfaces, then the relevant number to count is two. This is
especially true if there is systems engineering effort involved with developing a unique
test procedure for each of the unique interfaces.

4. Focus on the logical aspects of the interface to determine complexity. This
provides a better indicator of the complexity of each interface from a systems engineering
standpoint. Counting the number of wires in an interface may not be a good indicator.
Instead, the protocol used or the timing requirement associated with the interface will be
a better indicator of complexity.

5. Consider directionality of the interface. Bidirectional interfaces count as two
interfaces because they require coordination on both ends.

Algorithms
Since the influence of algorithms can vary by organization, the process of identifying an algorithm
for COSYSMO can also be different. Ultimately the sources from which the number of algorithms
can be obtained change as the system definition matures. For example, during the conceptual
stage of a system, where there is a limited amount of information available, the only indicators
may be functional block diagrams. As the system design evolves and more uncertainties are
resolved, there are more sources available to aid in the estimation of algorithms. Table 2
includes examples of the entities that are available at different stages of the system life cycle and
their corresponding attributes that can be used to estimate the number of algorithms. They are
listed in typical order of availability; the first entities are typically available during the conceptual
stages while the latter ones are available as the system design evolves.

Table 2. Candidate Entities and Attributes for Algorithms

Entities Attributes
Historical database # of algorithms
Functional block diagram # of functions that relate to algorithms
Mode description document algorithms
Risk analysis algorithm related risks
System specification algorithms
Subsystem description documents algorithms
Configuration baseline technical notes

The attributes may provide more detailed information about the functions that the algorithms
perform. This can aid in determining the complexity of that algorithm, an important step in
estimating size for COSYSMO.

The approach for determining the quantity of algorithms in a system is unavoidably different for
each organization. System algorithms are unique in the sense that they are highly related to the
“# of Requirements” and “# of Interfaces” size drivers. If not explicitly defined up front, the
number of algorithms can be derived from a system-level requirement or deduced from the
properties of an interface. In terms of systems engineering effort, the existence of an algorithm

Page 18 of 28

introduces additional work related to simulation, implementation, test cases, documentation, and
support. These activities are illustrated in Figure 1.

Figure 1. Effort Decomposition Associated With an Algorithm

There exists an entire process in which the general types of algorithms needed are determined,
math is developed to implement them, algorithm-related requirements are communicated to other
designers (subsystems, hardware, software, etc.) for what data and data quality requirements,
and algorithm trade-offs are performed. These activities are within the scope of systems
engineering and are covered in COSYSMO.

In some cases, a significant amount of effort associated with systems engineering as related to
algorithms will involve reuse which can reduce the complexity of algorithms and in turn the effort
associated with their implementation. Conversely, there may be situations where algorithms are
unprecedented and loosely defined. From an implementation standpoint, the number of design
constraints – such as timing restrictions or processor limitations – may influence the complexity of
software algorithms when compared to hardware algorithms. In either case, both types of
algorithms should be counted and assigned a level of complexity for input into COSYSMO.

To demonstrate the process of identifying and counting an algorithm an example is provided from
the field of signal processing. For purposes of this example it is assumed that a system
specification has been developed. From this specification, the following system level requirement
is obtained: All images captured by the sensor shall be compressed in compliance with MPEG-4
coding standard. This requirement triggers several possible solutions that meet the required
standard. A developer may decide to implement the requirement with a well-known algorithm
used for compressing visual images: MPEG-4 Visual Texture Coding (VTC). As illustrated in
Figure 1, this algorithm generates products associated with it which lead to increased systems
engineering effort that is estimated by COSYSMO. Other effort generated by the implementation
specification, such as software engineering, is not estimated by COSYSMO. Models such as
COCOMO II should be used to estimate the software development effort. For purposes of
COSYSMO, the MPEG-4 VTC algorithm counts as one distinct algorithm even if it is used
multiple times in the same system. Since this is a well known algorithm with predictable behavior
it qualifies as an “easy” algorithm.

Page 19 of 28

Operational Scenarios
In a similar way requirements were defined at sea level, operational scenarios must also be
identified at a level that is of interest to systems engineering. Operational scenarios are often
obtained via test cases or system use cases since they represent end-to-end system functionality
or independent capabilities of a system. For example, an operational scenario for a Windows XP
computer is to operate in “safe mode”. Use case diagrams in UML are also helpful for
determining the number and complexity of use cases in a system.

b) How to avoid double counting between size drivers
Each size driver takes the form of both a continuous and categorical variable. As a continuous
variable it can represent quantities for “requirements” or interfaces”, which can range from small
values to very large ones; with most cases falling within an expected range (i.e., most systems
have hundreds of systems engineering requirements). As a categorical variable it can be
represented in terms of discrete categories such as “easy”, “nominal”, or “difficult” to describe the
complexity associated with each requirement, interface, etc. It is expected that most systems
have requirements that fall into at least one of these categories. The categorical scales are
presented next and the counting rules for determining the values of the continuous variables are
provided in the following sections.

Three strategies exist for counting size drivers in COSYSMO. They are presented here by most
ideal to least ideal, although the strategy employed will be primarily determined by the phase of
the life cycle in which the system is in.

Strategy 1: Pure size drivers
The ideal situation is when the size drivers are readily available to be counted because they are
well documented in a database such as DOORS or are easily identified in system documentation.
This gives the user the highest level of confidence when determining the number of requirements,
interfaces, algorithms, and operational scenarios in a system.

Step 1: Determine which of the four size drivers are relevant to the system of interest.
Since COSYSMO calculates the functional size of the system as weighted sum of
requirements, interfaces, algorithms, and scenarios, any combination of the four drivers is
an acceptable input. However, too much information presents its own challenges. If
duplicated information exists in two different sources, such as interfaces also being
described as requirements, use only one of them and be sure to

• favor the driver that provides the most reliable information; and
• favor the driver that is most representative of systems engineering effort

Step 2: Distribute the size driver quantities among categories of easy, nominal, and difficult.
Since there are four size drivers and three levels of complexity for each, there user has
twelve fields where size information can be entered.
Step 3: Identify whether any of the effort represented by multiple size drivers is being
double counted. There nature of double counting frequently stems from situations where
an interface is described by both an interface control document and a system specification.
This can subsequently lead to the same technical effort being counted in terms of number
of interfaces and number of system requirements, leading to an inflated count of functional
size and thereby and overestimate of systems engineering effort. Whenever the user
needs to choose between one driver or the other, the following criteria should be helpful in
deciding which will provide more reliable information:

• favor information that comes from clearly defined project documentation that
contains information that is easy to count

• if requirements are not available early in the life cycle, then favor information that is
available such as operational scenarios

• favor information that is less likely to change over the course of the project
• favor information that is most representative of systems engineering effort

Page 20 of 28

Guidance on how to identify the best level of system decomposition (also referred to as “sea
level”) at which to count requirements is discussed in section 2. a). Guidance on how to allocate
requirements among the three complexity categories is discussed in section 2. c). Additional
approaches to facilitate the size driver counting process are provided in section 2. e). and include
the use of systems engineering tools (i.e., DOORS) and frameworks (i.e., DODAF).

Strategy 2: Pure requirements
The requirements specification document often emerges as the dominant source for functional
size because requirements are commonly accepted vehicles for describing detailed system
functionality. Equivalent requirements can serve as a baseline measure of functional size which
could otherwise be represented by the three other size drivers.
In cases where interfaces, algorithms, or operational scenarios are not available, functional size
can be estimated by using requirements only. The translation of system attributes across
easy/nominal/difficult requirements may be less reliable because the complexity aspects of the
other size drivers may be lost in translation.

Strategy 3: Equivalent requirements
In some situations, characteristics of the system may be described in documents where
requirements are not mentioned. These include interface control documents, functional block
diagrams, and operational concept documents. In this case, interfaces, algorithms, or high-level
operational scenarios may be the only way to quantify systems engineering effort due to the
absence of requirements. This situation is common during the early stages of system
conceptualization, and ironically, the time when COSYSMO is most useful despite the high
degree of uncertainty of the system definition. Nevertheless, the quantities of interfaces,
algorithms, and scenarios should be entered into the model. Mathematically, these quantities are
converted into equivalent requirements in the model since all parameter weights are relative to
Nominal # of System Requirements.

Despite which strategy is used, COSYSMO assumes that the systems engineering effort being
counted has life cycle considerations that include works associated with conceptualize, develop,
OT&E, and transition to operation.

c) Deciding between Easy, Medium, and Difficult
As described in section 1. c), the quantities for each size driver can be distributed across easy,
nominal, and difficult complexity categories. It is not expected that all requirements are easy nor
are they all difficult. The user must make an assessment of the distribution of each size driver is
among the complexity categories based on the nature of the system. The viewpoints provided for
each size driver should serve as guides to make this decision but ultimately the assessment of
complexity should be made with the impact of systems engineering effort in mind.

Fore example, a system with 1,000 requirements could have 40% of them be considered easy
because they are straightforward and have been implemented successfully before, 40% of them
considered to be nominal because they are moderately complex and require some effort, and
20% of them could be difficult because they are very complex and have a high degree of overlap
with other requirements. The distribution would then be:

400 400 200
Easy Nominal Difficult

- Simple to implement - Familiar - Complex to implement or
engineer

- Traceable to source - Can be traced to source with
some effort

- Hard to trace to source

- Little requirements overlap - Some overlap - High degree of
requirements overlap

Page 21 of 28

The model algorithm will apply the appropriate weights, from Figure 2, and calculate the
equivalent number of requirements as follows:

 400 easy requirements * 0.5 weight for easy = 200 equivalent requirements
 400 nominal requirements * 1.0 weight for nominal = 400 equivalent requirements
 200 difficult requirements * 5.0 weight for difficult = 1,000 equivalent requirements

 TOTAL = 1,600 equivalent requirements

Rather than the 1,000 original requirements defined in the system specification, COSYSMO will
estimate systems engineering effort based on 1,600 equivalent requirements due to the
distribution of complexity selected by the user.

Figure 2. Size Driver Weights

The same process is followed for the three other size drivers and eventually they are all
converted into equivalent requirements.

d) Adjusting nominal effort (rating cost drivers)
After determining the size of the system by assigning values to the size drivers, the user must
give an assessment of the system of interest with respect to the understanding, risk,
implementation difficulty, development environment, and people capability with respect to
systems engineering. This is done through the cost drivers, also referred to as effort multipliers,
because of their multiplicative effect on the systems engineering effort calculation. Assigning
ratings for these drivers is not as straight forward as the size drivers mentioned previously. The
difference is that most of the cost drivers are qualitative in nature and require subjective
assessment in order to be rated.

In addition to a definition, each driver has a corresponding rating scale that describes different
attributes that could be used to rate the degree of impact on systems engineering effort. Rating
levels include: Very Low, Low, Nominal, High, Very High, and in some cases Extra High. The
Nominal level is assigned a multiplier of 1.0 and therefore represents no impact on the systems
engineering effort estimate. Levels above and below nominal are assigned multipliers above or
below 1.0 according to their individual impact on systems engineering effort. The incremental
impact of each step along a multiplier’s rating scale depends on the polarity of each driver. For
example, the requirements understanding multiplier is defined in such a way that Very Low
understanding will have a productivity penalty on systems engineering. As a result, it will have a
multiplier of greater than 1.0, such as 1.85, to reflect an 85% productivity penalty. The rating
scale values for the cost drivers are provided in Table 3.

Page 22 of 28

Table 3. Rating Scale Values for Cost Drivers

 Very
Low Low Nominal High

Very
High

Extra
High EMR

Requirements
Understanding 1.85 1.36 1.00 0.77 0.60 3.08

Architecture
Understanding 1.62 1.27 1.00 0.81 0.65 2.49

Level of Service
Requirements 0.62 0.79 1.00 1.32 1.74 2.81

Migration Complexity 1.00 1.24 1.54 1.92 1.92
Technology Risk 0.70 0.84 1.00 1.32 1.74 2.49
Documentation 0.82 0.91 1.00 1.13 1.28 1.56
and diversity of
installations/platforms 1.00 1.23 1.51 1.86 1.86

of recursive levels
in the design 0.80 0.89 1.00 1.21 1.46 1.83

Stakeholder team
cohesion 1.50 1.22 1.00 0.81 0.66 2.27

Personnel/team
capability 1.48 1.22 1.00 0.81 0.66 2.28

Personnel
experience/continuity 1.46 1.21 1.00 0.82 0.67 2.18

Process capability 1.46 1.21 1.00 0.88 0.77 0.68 2.15
Multisite coordination 1.33 1.15 1.00 0.90 0.80 0.72 1.85
Tool support 1.34 1.16 1.00 0.85 0.73 1.84

For example, the Requirements Understanding driver is worded positively since there is an effort
savings associated with High or Very High understanding of the requirements. This is indicated
by multipliers of 0.77 and 0.60, respectively representing a 23% and 40% savings in effort
compared to the nominal case. Alternatively, the Technology Risk driver has a cost penalty of
32% for High and 74% for Very High. Not all rating levels apply to all of the drivers. Again, it is a
matter of how the drivers are defined. The Migration Complexity driver, for example, only
contains ratings at Nominal and higher. The rationale behind this is that the more complex the
legacy system migration becomes, the more systems engineering work will be required. Not
having a legacy system as a concern, however, does not translate to a savings in effort. The
absence of a legacy system is the Nominal case which corresponds to a multiplier of 1.0.

The cost drivers are compared to each other in terms of their range of variability, or Effort
Multiplier Ratio. The EMR column in Table 3 is representative of an individual driver’s possible
influence on systems engineering effort. The four most influential cost drivers are: Requirements
Understanding, Level of Service Requirements, Technology Risk, and Architecture
Understanding. The least influential, Documentation, # of Installations, Tool Support, and # of
Recursive Levels in the Design were kept because users wanted to have the capability to
estimate their impacts on systems engineering effort. The relatively small influence of these four
drivers does not mean that the model users felt they were insignificant. Their presence gives
users the ability to quantify their impact on systems engineering.

e) Additional tools to facilitate size driver counting process
Early in the system life cycle, well defined project documentation may not be available to
organizations due to the evolutionary nature of systems. In this case surrogate sources of data
must be obtained or derived in order to capture leading indicators related to the four size drivers.
Possible sources are the DoD Architecture Framework products shown in Table 4 because of
their availability early in the program life cycle.

Page 23 of 28

Table 4. Useful DODAF Products for COSYSMO Sizing

Driver Name Useful Architecture Products
Number of System
Requirements

The architecture development process and the requirements engineering
process are interrelated and fairly loopy. The cost modeler can benefit
from this iterative exercise and extract quantifiable values.

Number of Major
Interfaces

As mentioned earlier, the number of interfaces in the Interface Control
Document helps provide a ballpark figure for this size driver. DoDAF
products, notably, SV-1 (“System Interface Description”) and SV-2
(“System Communication Description”), the OV-3 (“Operational Information
Exchange Matrix”) can also help in identifying the total number of major
interfaces.

Number of Critical
Algorithms

The operational and the system view have specific architectural products
which can help in estimating the number of critical algorithms. Notably,
from the operational view, the OV-6a, b and c (“Operational Rules, State
Transition and Event-Trace Description”) and the SV-10a, b and c
(“System Rules, State Transition and Event-Trace Description”) from the
system view can help in understanding and estimating the number of
critical algorithms.

Number of Operational
Scenarios

The OV-1 “High-level Operational Concept Graphic” maps to use-cases
when architecture products are developed using the Object-Oriented
methodology. The total number of use-cases can be used in estimating
this size driver.

Requirements management tools such as DOORS are also helpful in populating the # of system
requirements driver. An additional step is needed to distribute the quantity of requirements
across the three complexity categories; easy, nominal, and difficult. This is a manual process
because of the expert judgment needed to assess the relative complexity of the requirements and
their impact on systems engineering effort.

3. Model output

a) Project effort distribution across activities

The academicCOSYSMO model provides a single point person month output which requires
some interpretation. As show earlier in Table 1, one of the assumptions of the model is that a
standard set of systems engineering activities are being performed throughout certain phases in
the life cycle. These 33 activities are distributed across 5 fundamental processes as shown in
Table 5. This distribution is not universal but it provides a typical spread of effort that is
characteristic of systems engineering projects.

Table 5. Effort Distribution Across ANSI/EIA 632 Fundamental Processes

ANSI/EIA 632 Fundamental Process Typical effort

Acquisition & Supply 7%
Technical Management 17%
System Design 30%
Product Realization 15%
Technical Evaluation 31%

Page 24 of 28

The effort distribution across fundamental processes, Px, is helpful in determining how to allocate
the estimated systems engineering resources in COSYSMO. The sum of the 5 fundamental
processes equal the total systems engineering estimate, that is:

 P1 + P2 + P3 + P4 + P5 = 100%

Therefore, the COSYSMO estimate x can be allocated to each of the 5 processes.

 x * 0.07 = effort required for P1
 x * 0.17 = effort required for P2
 x * 0.30 = effort required for P3
 x * 0.15 = effort required for P4
 x * 0.31 = effort required for P5

 TOTAL = x

The breakdown of effort by systems engineering process is helpful not only for planning purposes
but also when an organization is only interested in estimating part of the systems engineering
activities. For example, if the systems engineering organization is only responsible for system
design, product realization, and technical evaluation then the typical effort is:

P3 + P4 + P5 = adjusted effort factor
0.30 + 0.15 + 0.31 = adjusted effort factor
0.76 = adjusted effort factor

The initial estimate provided by COSYSMO, x, should be adjusted by a factor of 0.76 to reflect
the absence of acquisition & supply and technical management activities assumed in the
estimate.

b) Project effort distribution across phases
The single point person month output can also be distributed over time. The assumption in the
model is that a standard set of systems engineering activities are being performed throughout
certain phases in the life cycle. These 4 life cycle phases are: Conceptualize, Develop,
Operational Test & Evaluation, and Transition to Operation as shown in

Table 6. This distribution is not universal but it provides a typical spread of effort that is
characteristic of systems engineering projects.

Table 6. Systems Engineering Effort Distribution % Across ISO/IEC 15288 Phases
Conceptualize Develop Operational Test & Evaluation Transition to Operation

23 35 28 14

The distribution across life cycle phases, Ax, is helpful in determining how to allocate the
estimated systems engineering resources in COSYSMO. The sum of the 4 life cycle phases
equal the total systems engineering estimate, that is:

A1 + A2 + A3 + A4 = 100%

Therefore, the COSYSMO estimate x can be allocated across each of the 4 life cycle phases.

 x * 0.23 = effort needed in A1
 x * 0.35 = effort needed in A2
 x * 0.28 = effort needed in A3
 x * 0.14 = effort needed in A4

Page 25 of 28

 TOTAL = x

The breakdown of effort by systems engineering life cycle phase is helpful not only for planning
purposes but also when an organization is only interested in estimating part of the systems
engineering life cycle. For example, if the systems engineering organization is only responsible
for the conceptualization and development of the system then the typical effort is:

A1 + A2 = adjusted effort factor
0.23 + 0.35 = adjusted effort factor
0.58 = adjusted effort factor

The initial estimate provided by COSYSMO, x, should be adjusted by a factor of 0.58 to reflect
the absence of the operational test & evaluation and transition to operation life cycle phases
assumed in the estimate.

c) Potential overlap with COCOMO II
The danger with model overlap is that it can lead to unnecessary double-counting of effort
because it is expected that systems engineering and software engineering are highly coupled in
most organizations. On the surface, COCOMO II and COSYSMO appear to be similar.
However, there are fundamental differences between them that should be highlighted. These are
apparent when the main features of the model are considered:

• Sizing. COCOMO II uses software size metrics while COSYSMO uses metrics at a level
of the system that incorporates both hardware and software

• Life cycle. COCOMO II, based on a software tradition, focuses exclusively on software
development life cycle phases defined by MBASE6 while COSYSMO follows the system
life cycle provided by ISO/IEC 15288

• Cost Drivers. Each model includes drivers that model different phenomena. The overlap
between the two models is minimal since very few of the COCOMO II parameters are
applicable to systems engineering

Other differences are highlighted in Table 7.

Table 7. Differences between COCOMO II and COSYSMO

 COCOMO II COSYSMO
Estimates Software development Systems engineering
Estimates size via Thousands of Software Lines

of Code (KSLOC), Function
Points, or Application Points

Requirements, Interfaces,
Algorithms, and Operational
Scenarios

Life cycle phases MBASE/RUP Phases: (1)
Inception, (2) elaboration, (3)
construction, and (4)
transition

ISO/IEC 15288 Phases: (1)
Conceptualize, (2) Develop,
(3) Operation, Test, and
Evaluation, (4) Transition to
Operation, (5) Operate
Maintain or Enhance, and (6)
Replace or dismantle.

Form of the model 1 size factor, 5 scale factors,
and 18 effort multipliers

4 size factors, 1 scale factor,
14 effort multiplier

Represents
diseconomy of scale
through

Five scale factors One exponential system
factor

6 Model Based System Architecting and Software Engineering

Page 26 of 28

Despite the differences between the two models there is potential overlap between the two
whenever the models are being used in parallel to estimate the effort involved with delivering a
software-intensive system. Part of understanding the overlap between the two models involves
deciding which activities are considered “system engineering” and which are considered
“software engineering/development” and how each estimation model accounts for these activities.

COCOMO II is designed to estimate the software effort associated with the analysis of software
requirements and the design, implementation, and test of software. COSYSMO estimates the
system engineering effort associated with the development of the software system concept,
overall software system design, implementation and test. The COCOMO II estimate of the
software effort will surely account for the additional effort required by any additional testing of the
software system; at the same time, the COSYSMO effort will account for additional test
development and management since the systems engineers are required to perform additional
validation and verification of the system. Either model can account for this effort based on how
users wish to allocate the testing activity. Each organization’s unique relationship between these
two disciplines needs to be reconciled when using COSYSMO and COCOMO II together. One
approach for accomplishing this is to examine the Work Breakdown Structures of each discipline.

COSYSMO uses the WBS defined in EIA/ANSI 632 while COCOMO II uses the one defined in
MBASE/RUP. The typical effort distribution of a software-intensive system is provided in Table 8
together with the activities that could potentially overlap when using both models during an effort
estimation exercise. The numbers in the cells represent the typical percentage of effort spent on
each activity during a certain phase of the software development life cycle as defined by
COCOMO II. Each column adds up to 100 percent.

Table 8. COCOMO II and COSYSMO Overlaps

 Software Development Project Stage Inception Elaboration Construction Transition
Management 14 12 10 14
Environment/CM 10 8 5 5
Requirements 38 18 8 4
Design 19 36 16 4
Implementation 8 13 34 19
Assessment 8 10 24 24
Deployment 3 3 3 30

COCOMO II only

COSYSMO
Possible COCOMO II/COSYSMO overlap

The scope of COCOMO II includes the elaboration and construction activities generally defined
as software development. The gray cells indicate the systems engineering activities that are
estimated in COSYSMO. The diagonally shaded cells indicate the COCOMO II/COSYSMO
overlap activities that may be double counted when using the models simultaneously. The exact
amount of effort being double counted will vary for each organization based on the way they
define systems engineering relative to software engineering.

Page 27 of 28

4. Local calibration
The best way to ensure that COSYSMO is accurate to your context is to perform a local
calibration. This involves collecting data on completed programs that have a significant systems
engineering component and using it to calibrate the model constant, A, described in section 1. b).

a) Data collection

The focus is on collecting data for completed programs since it is necessary to know how much
systems engineer effort was actually expended on a program. This information – together with
the total # of system requirements, # of interfaces, # of algorithms, and # of operational scenarios
– is used to calibrate the model based on the historical performance of the organization. A data
collection form is available for download at http://www.valerdi.com/cosysmo in the “Downloads”
section. It is recommended that the data collection be done in person hours since this is a
uniformly accepted metric. If effort data is maintained in person months then the user must make
sure that every project has interpreted person months as 152 person hours. This is an important
issue for European users since person months are usually considered to be 138 person hours. In
which case, 1 European person month = 1.1 U.S. person months.

b) Measurement process
The recommended systems engineering cost estimation life cycle for COSYSMO is shown in
Figure 3. Several verification and validation opportunities exist along the way to tailor the model
to an organization.

Figure 3. Estimation Life Cycle

The success of this process is dependent on the identification, training, and consistency of an
internal COSYSMO champion throughout the piloting and institutionalization phases.
Organizations that have identified a committed, reliable, authorized, and knowledgeable
champion have been successful in adopting COSYSMO and tailoring it to their needs.

c) Data analysis
Once data on completed programs has been collected, the simplest way to perform a local
calibration is to use the Calico tool that accompanies the SystemStar implementation of
COSYSMO which is developed by SoftStar systems. For more information visit
http://www.cosysmo.com.

Page 28 of 28

d) Modification of model spreadsheet
Upon completion of the local calibration, the new value for A can be entered into the
academicCOSYSMO spreadsheet in cell H28. The current value of the industry calibration is
38.55 and assumes that the calibration has been done in person hours. Alternatively, if the
calibration was done in person months then the value entered in cell H28 must be multiplied by
152 (this is done to offset the subsequent division by 152 embedded in the algorithm).
Regardless of whether the value of A is entered as months (and multiplied by 152) or hours,
academicCOSYSMO will provide the estimate in person months in order to be compatible with
other cost estimation models.

e) Customization
In addition to the local calibration, further opportunities exist for tailoring the model to a specific
organization. These include:

 Adjustment of (Dis)economy of scale constant, E
 Clarification of size driver counting rules (i.e., sea level) and system-of-interest
 Mapping to internal Work Breakdown Structure
 Adjustment of life cycle scope
 Distribution of effort over time
 Addition of new cost or size drivers

