Goals of Effort

• Determine whether budgets for software maintenance are sufficient to cover all of the work performed to keep systems operational

• If not, build a business case for increasing POM budgets to provide operations, maintenance and sustainment for warfighter

• Recommend policies and guidelines for ensuring budgets are sufficient once systems are fielded
Target Audience

- Target Audience
 - DoD finance staff
 - Army seniors
 - Army finance staff
 - Program managers
 - Estimators /model creators

- Benefits
 - Increased understanding of influence factors
 - More effective use of maintenance budgets
 - Increased maintenance budgets (POM)
Study Approach

• Investigate maintenance
 - What are the tasks?
 - Who does them?
 - What are the costs?
 - How they are estimated?
 - What impacts future costs?

• Understand
 - Current costs and risks
 - Current estimating practice
 - Current budgeting approach
On-Going Tasks

- Data collection
 - Questionnaire/instruments
 - Maintenance database
 - Data administration, protection & management
- Stakeholder Program
 “Working one-on-one “
 - Web site
 - Case studies
 - Outreach
 - Conferences
 - Presentations
- Architecture development
 - Information needs
 - Data modeling
- Analysis
 - Gap analysis
 - Indicators
- Project management
 - Status and progress reviews/assessments
• **Products**
 - Facts about actual work done for operations, maintenance and sustainment
 - Budget gaps based on actual work needs
 - Rationale why gaps should be filled (i.e., business case)
 - Presentations, publications and benchmarks
 - For use in changing current business practices

OUTCOME:
Maintaining and Sustaining Software in a Smarter, Quicker and More Effective Manner

Approved for Public Release, Distribution A
Study Participants

- **Study team**
 - Joanne Arias, Army
 - Bob Charette, IEI
 - Cheryl Jones, Army+
 - Jack McGarry, Army
 - Dave Morris, IEI
 - Don Reifer, RCL+

- **Sponsor**
 - James Judy, ASA
 - Jeramia Poland, ASA

- **DOD collaborators**
 - Ft. Monmouth
 - Ft. Sill
 - Picatinny Arsenal
 - Redstone Arsenal
 - USAF/ESC
 - Warner Robbins AFB, GA

- **Industry collaborators**
 - Lockheed Martin
 - Northrop Grumman
 - Raytheon
 - Others

+ Co-Project Leads

Approved for Public Release, Distribution A
Data Collection Focus

1. Establish goals for effort
 - Start 2008

2. Review literature and past efforts

3. Conduct fact-finding

4. Validate findings
 - Questionnaires
 - With participants

5. Publish findings and summary of initial results
 - Interim Report

6. Devise new maintenance costing approaches

7. Develop Software Maintenance Handbook
 - To USAF 2010

8. Initiate data collection efforts
 - Build cost database
 - Recommend improvements

Legend:
- Finished effort
- Current effort
Results of Army Maintenance Study

- Over 200 projects surveyed
 - Six Army and AF Centers visited
 - Over 70 interviews
 - Industry consulted
 - Results viewed as universally true
- Findings
 - Maintenance centers do more than just updates and repairs
- Distribution of work much different than expected
- Testing is the major maintenance activity
- Transition and transfer is done poorly
- Estimates and budgets don’t cover all the work
 - Sustaining engineering
 - Product field & user support
 - Regression testing
- Efficiencies are needed to cope with workload
Army Projects Interviewed

- Adam Cell
- Aerial Targets
- AMPS
- America’s Army
- AN/TPQ-37
- Apache AH-64A
- Blackhawk
- Bradley
- ESI DB
- FOS
- GFC
- Hellfire
- JAMS
- JLENS
- Kiowa & Kiowa CPT Trainer
- LHMB
- Longbow
- Lower Tier
- MLRS
- MMS-P
- NLOS
- NSITE
- Paladin
- Patriot
- SBX
- Shadow & Hunter UAS
- TACMS MCTD

Plus we validated findings with CECOM & Picatinny

Approved for Public Release, Distribution A
Air Force Projects - 2009

- Visited:
 - Hanscom AFB, MA
 - Robins AFB, GA
- Findings were very similar to those found across Army centers
- AF is pursuing their own data collection activities
- Want to establish maintenance CERs

- Projects interviewed:
 - AWACS
 - C130J
 - MPS
 - MMP-U
 - TACP-M
 - FAB-T
 - JSS
 - CITS
 - DASR
 - Elec. Warfare
 - SOF Aircraft
 - JMPS
 - Joint STARS
 - JTIDS
 - F-15
 - MRT
 - MMRT

Approved for Public Release, Distribution A
Army Projects Analyzed - 2010-2011

- Picatinny Arsenal
 - LHMBC
 - MFCS-H
 - Paladin
 - TAD

- Data gathered and analyzed
 - Processes to be used perfected
 - Analysis identified important trends
 - Hard data captured

Approved for Public Release, Distribution A
Notes

- About seventy percent of their work involves:
 - Maintenance
 - Sustaining Engineering
 - Independent V&V

- The other thirty percent is devoted to other tasks:
 - Acquisition management
 - Software development (e.g., America’s Army)

- Maintenance staff includes both government and in-house contractor personnel
Maintenance Groups Support Up To Four Releases (in parallel)

- Confusion often reigns because maintenance staff at centers are working on multiple releases in parallel using funds available
 - “Development” version working enhancements, repairs and perfective updates to current baseline
 - Often done iteratively with multiple releases
 - “Fielded” and “to be fielded” releases
 - Requirements release (included because takes staff resources and may pursue prototyping)
- Budgets taken from several sources
Typical Release Contents

- **Enhancements** - incorporating new features and functions into released based on approved change requests.
- **Perfective changes** - making the software run more quickly or efficiently.
- **Repairs** - fixes incorporated to address outstanding software trouble reports.
- **Patch release** - software sent to the field that corrects minor problems.
- **Major release** - software versions each released with different functionality
Future Work Projections

• Workload will rise as more and more systems are retrofit to support net-centric warfare concepts
• Total effort may increase as it gets better aligned with the work than needs to be done
• Info Assurance work will continue to grow
• Net result will be that backlog of priority changes will take longer to process

Future Workload

Distribution of Effort
% Effort Done by Activity

- Maintenance 30%
- Sustaining Engr. 15%
- IV&V/IV&T 15%
- Acquisition Mgmt. 25%
- Interoperability
- Info Assurance

Approved for Public Release, Distribution A
Testing is Primary Maintenance Activity

- As much as 55-70% of the technical work done during maintenance supports retesting and qualifying the system.
- Testing is much harder when developers fail to transition and turnover the needed set of regression tests for use in revalidating the software once changes have been made.
- Support tasks are performed to maintain system integrity and support field operations.

Approved for Public Release, Distribution A
Transition and Turnover Done Poorly

- Transition requirements often waived, avoided or delayed

 - Consequences dire
 - Delivery not ready for maintenance
 - Facilities, tactical equipment and tools often not available when needed for testing block releases

 - Prime wants to retain responsibility
 - Ownership rights to tools and special test equipment often an issue

- Budgetary guidelines needed
 - Emphasize Program Office accountability/responsibility
 - Provide transition budget line as review item in prime item contract

- Development SIL seldom transitioned for maintenance
Not All Of The Work Funded

- Estimates formulated based on effort needed to make updates and repairs
- Other activities like sustaining engineering and testing not covered
- Unfunded mandates like Info Assurance not adequately covered
- Small projects done on LOE basis
- Resulting budgets force maintenance staff to play backlog reduction games
- They do what they can with resources allocated
- Cost models & heuristics used perpetuate status quo
 - Study done that verifies this finding
- Shortfalls in funding need to be corrected
Future Plans

• Collect O&M cost and quality data and build the software maintenance database
• Analyze these data to better understand the maintenance workload and the factors that drive cost, risk and schedule
• Understand how big our O&M workload truly is
• Develop measures and indicators that provide us insight into this workload
• Identify best practices and put them to work to improve O&M affordability
What We Want From You

• Query
 - Ask questions to gain insight into how you run your business

• Gather
 - As much “hard data” on your software cost, quality and productivity as we can
 - Your opinions about what factors drive these costs and impacts your quality

• Understand
 - What it truly takes to get the maintenance job done cost-effectively

• Act
 - Use the “hard data” to help build a business case for change
 - Focus initially on the low hanging fruit
 - Then, move on to the more difficult changes
Want to Participate?

Fact-Finding
• Become a collaborator and provide maintenance data under MOA or NDA agreement
• Collaborators will have early access to results via private web site
 - Typically, six months to a year before others
• Data will be protected

Frame Recommendations
• Collaborators will help shape recommendations for seniors

Become More Effective
• Results will make it possible to improve how we do business overall

End-Game: Win the Tough Battles of the Budget in Leaner Times

Approved for Public Release, Distribution A
Benefits of Participation

Industry Groups
- Hard data will help you to improve the way you maintain software
- Results will help you define and defend reasonable budgets for maintenance activities
- Benchmarks will help you to more effectively do the job and manage the work involved

Government Groups
- Hard data will help us to convince seniors that POM budgets need to be increased
- Business cases will help us to educate management about the work that needs to done during O&M phase of the life cycle
- Data will help everyone to more effectively use the sparse resources allocated to do the job
Data Protection Scheme

• All data provided will be protected
 - Projects will be code named
 - Files will be encrypted and placed on a machine with restricted access
 - Limited access to data will be enforced via terms of MOA or NDA

• Only generalized results will be reported
 - Traceable to application domains, not specific projects

• Custodian will administer database
• Process
 - Teleconference held to explain goals
 - Questionnaire distributed to participant along with glossary and other aides
 - Questionnaire completed by participant(s)
 - Questionnaire reviewed and finalized by our team
 - Initial findings provided at out-brief
 - Follow-up after-the-fact to clarify items and gather more data

• What we expect
 - Openness - we are here to help you
 - Candor
 - Responses

• What you should expect
 - Openness
 - Candor
 - Honesty
Next Steps

- Meet with Projects
 - Review the questionnaires (or fill them out if necessary)
 - Review whatever “hard data” that you provide to understand it fully
 - Gather worksheets with the detailed estimates/actuals so we can work our magic
 - Have a tour of the facilities if time permits
 - Develop insights into ways we can help you get your job done

Approved for Public Release, Distribution A
Summary and Conclusions

• Summarized past efforts and accomplishments
• Highlighted issues and suggested future paths
• Discussed our fact-finding process
• We hope that you are ready to take the next step
Ten Myths of Maintenance

• **Myth 1** - PDSS workload is aimed at satisfying requirements
 - Goal is getting rid of high priority ECPs (backlog reduction)

• **Myth 2** - PDSS is funded based on requirements
 - Mostly funded LOE using available funds

• **Myth 3** - In general, maintenance schedules are based on user need dates
 - Actually, based on calendar release dates
Ten Myths of Maintenance

• **Myth 4** - Sustaining engineering effort is separately estimated and managed
 - Most of funding for this effort is taken out of hide

• **Myth 5** - IV&V uses separate processes, people and tools to assess capability of the code to perform
 - Often projects must share people and tools because of lack of funds
 - Tactical equipment and resource availability often constrain options
Ten Myths of Maintenance

• **Myth 6** - Maintenance personnel are for the most part junior
 - Actually senior people with skills not readily available on active marketplace (Ada, VAX, etc.)

• **Myth 7** - Motivating maintenance personnel is difficult
 - Interesting work, educational opportunities, etc. do the job

• **Myth 8** - Process improvement efforts address maintenance
 - Address only a subset of the work
Ten Myths of Maintenance

- **Myth 9** - All maintenance groups do is maintenance
 - The Center has the flexibility to enter the software business
 - It also has the ability to use new paradigms and embrace commercial best practices

- **Myth 10** – The maintenance Group’s focus is software
 - They also fix hardware and work lots of contract issues
 - Some perform field engineering and other forms of support