Workshop #7
What Does Technical Debt Mean at a

System Level?

Bob Epps/Garry Roedler
Lockheed Martin Corporation
PSM User’s Group Conference

July 14, 2011

Participants

Mike Bandor
Alejandro Bianchi
Bill Curtis

Mike Denny

Bob Epps

John Ertischweiger
Cheryl Mcintyre
John Murdoch
Alain Picard
Garry Roedler
Jim Stubbe

Technical Debt Workshop for Systems
Engineering
Agenda

Management of Technical Debt- Steve McConnell
Technical Debt Observations- Jim Highsmith

Types of Debt- Chris Sterling

Break

Workshop Exercise # 1-ldentifying Technical Debt
Management of Architectural Debt- Ipek Ozkapa
Workshop Exercise # 2- Architecture & Technical Debt
Workshop Exercise # 3- System Design & Technical Debt
Workshop Summary/Action Plan

Technical Debt

“Management of Technical Debt”, Steve McConnell

Summary of Kinds of Debt
Non Debt

Features backlog, deferred features, cut features, and so on. Not all incomplete work is debt.
These are not debt because they do not require interest payments

Debt

|. Unintentional Debt. Debt incurred unintentionally due to low quality

Il. Intentional Debt. Debt incurred intentionally
Il.A Short-Term Debt. Short Term Debt, usually incurred reactively, for tactical reasons
II.LA.1 Focused Short Term Debt. Individually identifiable shortcuts(like a car loan)
I.LA.2 Unfocused Short-Term Debt. Numerous tiny shortcuts(like a credit card)
II.B Long-Term Debt. Long-term debt, usually incurred proactively, for strategic reasons

Types of Debt

“Managing Software Debt: Building for Inevitable Change”, Chris Sterling

Technical Debt

— These are activities that a team or team members choose not to do
well now and will impede future development if left undone

Quality Debt

— There is a diminishing ability to verify the functional and technical
quality of software

Configuration Management Debt

— Integration and release management becomes more risky, complex
and error-prone

Design Debt

— The cost of adding features is increasing toward the point where it is
more than the cost of writing from scratch.

Platform Debt

— The availability of people to work on software changes is becoming
limited or cost-prohibitive.

Relationship to SW Technical Debt?

R s~ d ° Do these examples apply

| to Systems?
* Design A
— Inconsistent approaches VV : :
— Poor cLoice ofpcpomponents/frameworks E‘ 1: — Al deSIgn items here are

— Hindsight desi :
s coge RN valid to systems

— Duplicate code
— Overly complex modules
— Standards violations
— Lack of documentation
— Style drift or clash
e Test
— Incomplete coverage
— Hard to maintain tests
— Excessive tests

Today’s tools make it easy to identify and measure
many of these forms of technical debt.
Copyright Lockheed Martin 2011

— Although code does not
apply, the sub-bullets apply
if it were for requirements

— Test items apply, but could
be augmented to V&V

e Are there other sources of
Technical Debt?

— Could go through the
system life cycle and
determine where shortcuts
are often taken

Relationship to SW Requirements Debt?

TBDs and TBRs late in lifecycle Missing TBDs and TBRs
)
kg -
Py
SR
Overly detailed requirements Obsolete requirements

Do these examples apply to
Systems?
— Each apply

— TBDs/TBRs late drive
unintended change

— Missing TBDs/TBRs drive

potential rework due to missed

analysis

— Detailed requirements cross
the boundary into design

Are there other examples of
Requirements Debt?

— Operational Concepts?
* Incomplete

— Stakeholder/mission
requirements?
e Same as the requirements

debt here, but different
perspective

e Can come to contractor
already with technical debt

Relationship to SW Decision Debt?

——+ Do these examples apply
to Systems?

Ne — All apply

N * What are impacts of
— decisions for:
Decisions made too late "‘“"“

— Technology selection?

e Too early — can provide
obsolete/non-supportable
solution

* Too late — miss schedule

* Inadequate info — choose
wrong or immature
technology

— Manufacturability?

Decisions made too early

Decisions based on
inadequate information

What is the level of confidence that you have in your decisions?

— Sustainability?

How to Measure and Manage System Debt
Measure and Manage— Technical Debt 7;

Module Complexity

¢ Technical debt from static analysis
tools
— Measure trends
— Manage by setting thresholds for
action and by identifying areas for
developer attention

* Test coverage debt
— Measure test coverage throughout
the lifecycle
— Manage by adding tests where
needed to meet coverage goals or
reduce risk

e TBDs and TBRs
— Measure total count and count for
requirements scheduled for
implementation in the next couple
of iterations
— Manage to reduce open TBDs and
TBRs in upcoming iterations

e Requirements Stability Index
— Measure average complexity by
component
— Manage by using isolation patterns
in areas with most instability

LU

50

20

Respect software’s limitations while leveraging its power.

Test Coverage for Iteration N

Package n Branch
Name Coverag|
e

jabed 75% 64%
@iiiiimii | 43% |

labgrs 3 0% 0%

v 13 90% 75%

labcdet 10 86% 88%

TBD / TBR Counts

 Total Count.

|
I courtfer Hest
|I I l l T

1 & 4 4 & & 7

Stability Index

Dby

e Do these measures apply for
System Debt?

— Fixes would be based on
prioritization/severity

— Technical reviews for architecture
instead of Static Anl

— Test coverage may apply
— Requirements debt measures apply

e Other thoughts on measures

— Confidence in architectural
elements — could drive prototyping

— Early validation of architecture
— % of architecture integrated

— Requirements validation debt (%
requirements validated)

— Requirements simulation debt

(% requirements simulated)

— Requirements verification debt
(% requirements verified)

Technical Debt Workshop

Action Plan

** White paper on Technical Debt applicability to Systems
» Outline
» Describe Technical Debt in Systems Engineering Vernacular

» ldentify sources and methods of measurement of Technical
Debt within the Systems Engineering Life Cycle
. System Requirements Analysis
. System Architectural Design (all levels)
. System Implementation
. System Integration, Verification and Validation
. System Transition (Deployment)
. System Operations and Maintenance

» |dentify of implication of System Level Technical Debt to
Software and Hardware Elements

