1%l

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

NC-CN2C

ES1: A Tool for Collecting
Object-Oriented Design
Metrics

Marta Stojanovic and Khaled El Emam
May 2001

Canadd

ERB-1087

NRC 44881

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

ESL: A Tool for Collecting Object-oriented
Design Metrics

Marta Stojanovic and Khaled El Emam
May 2001

Copyright 2001 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

ES1: A Tool for Collecting
Object-Oriented Design Metrics

Marta Stojanovic Khaled El Emam
National Research Council of Canada
Institute for Information Technology
Building M-50, Montreal Road
Ottawa, Ontario
Canada K1A OR6
{marta.stojanovic, khaled.el-emam}@nrc.ca

Abstract

There is considerable evidence that object-oriented design metrics can be used to make quality
management decisions leading to substantial cost savings. However, one of the major impediments to
the wider adoption of object-oriented metrics in practice has been the unavailability of robust and low-
cost metrics analyzers. Commercial tools tend to collect basic size metrics and many variants of size
metrics. Other potentially powerful coupling metrics are typically not collected. This report is the user
manual for a publicly available open-source metrics analyzer for the C++ language. This analyzer
collects a set of design metrics that have been empirically demonstrated to be beneficial for making
guality management decisions in practice.

1 Introduction

Recent evidence indicates that most faults in software applications are found in only a few of a system’s
components [6, 9-11]. The early identification of these components allows an organization to take
mitigating actions, such as focus defect detection activities on high risk components, for example by

optimally allocating testing resources [8], or redesigning components that are likely to cause field failures.

In the realm of object-oriented systems, one approach to identify faulty classes early in development is to
construct prediction models using object-oriented design metrics. Such models are developed using
historical data, and can then be applied for identifying potentially faulty-classes in future applications or
future releases. The usage of design metrics allows the organization to take mitigating actions early and
consequently avoid costly rework. Recent evidence suggests that taking such actions (in this case design

inspections) can result in an estimated 42% saving in post-release costs for a Java application [7].

One of the difficulties in implementing quality management using object-oriented design metrics is that
there have not been too many good tools available. A number of commercial tools collect the CK metrics
suite [1] (for the tools, see [2]). However, doubt has been raised about the validity of these metrics and

about the methodology used in previous studies that validated these metrics [5]. Therefore, there is a

need for tools that implement other metrics that have been empirically validated in a methodologically

sound manner.

This document describes a tool that can be used for collecting interface object-oriented metrics. This
means that the metrics can be calculated from interface specifications, which are usually available at the
design stage of a project. The current version of the tool works only with the C++ language. Which means
that it can compute the metrics from the ".h" files. The metrics that are actually collected capture size,
coupling, and inheritance. We only collect these metrics because previous research has indicated that
they are good predictors of class fault-proneness [2-4, 7]. The metrics that are collected by the tool are

summarized in Table 1.

Before proceeding further, it is important to realize that we are focusing only on metrics that were properly
validated. That is why the tool does not collect all or many metrics that have been defined in the literature.
As evidence accumulates demonstrating the efficacy of other metrics, they will certainly be included

within our tool.

Title Description

Coupling Metrics

OCAIC (instances) Class-attribute import coupling (number of coupled attributes)

OCAIC (classes) Class-attribute import coupling (number of coupled classes)

OCAEC (instances) Class-attribute export coupling (number of coupled attributes)

OCAEC (classes) Class-attribute export coupling (number of coupled classes)

OCMIC (instances) Class-method import coupling (number of coupled method
parameters and return types)

OCMIC (classes) Class-method import coupling (number of coupled classes)

OCMEC (instances) Class-method export coupling (number of coupled method
parameters and return types)

OCMEC (classes) Class-method export coupling (number of coupled classes)

ACAIC (instances) Ancestor class-attribute import coupling (number of coupled
attributes)

ACAIC (classes) Ancestor class-attribute import coupling (number of coupled
classes)

DCAEC (instances) Descendant class-attribute export coupling (number of coupled
attributes)

DCAEC (classes) Descendant class-attribute export coupling (number of coupled
classes)

ACMIC (instances) Ancestor class-method import coupling (number of coupled method
parameters and return types)

ACMIC (classes) Ancestor class-method import coupling (number of coupled
classes)

DCMEC (instances) Descendant class-method export coupling (number of coupled
method parameters and return types)

DCMEC (classes) Descendant class-method export coupling (number of coupled
classes)

Inheritance Metrics

DIT Depth of inheritance tree

Size Metrics
Number of pub/priv/prot/all Number of attributes (depending on the access option : public,
attributes private, protected, all)
Number of pub/priv/prot/all Number of methods (depending on the access option : public,
methods private, protected, all)
LOC Lines of Code (physical)

Table 1 Metrics collected by the ES1 tool.

1.1 Examples of Calculating the Metrics

Just to illustrate what the metrics mean, in this subsection we describe, using an example, a simple
calculation of all of these metrics. From Table 1 we can see that there are three types of interactions
between 2 classes : their relationship (whether it is a parent-child relationship or other), type of interaction
(whether a class has an attribute, method parameter, or return type of another class) and locus of impact
(whether a class is using another class through its attributes or method types — import — or it is used by

another class - export). Letters in the acronyms stand for these 3 types of interactions : A for ancestor, D

for descendant, O for other (neither ancestor nor descendant), CA for class-attribute, CM for class-

method, IC for import coupling and EC for export coupling.

Figure 1 shows a simple example of C++ code and how every type of coupling is captured.

class A: public class B

For class A : Class-method import coupling (OCMIC) with class C
For class C : Class-method export coupling (OCMEC) with class A

For class A : Ancestor class-attribute import coupling (ACAIC) with class B
For class B : Descendant class-attribute export coupling (DCAEC) with
class A

For class A : Ancestor class-attribute import coupling (ACAIC) with class D
For class D : Descendant class-attribute export coupling (DCAEC) with
class A

For class B : Ancestor class-method import coupling (ACMIC) with class D
For class D : Descendant class-method export coupling (DCMEC) with
class A

For class B : Class-attribute import coupling (OCAIC) with class C (2
instances)
For class C : Class-attribute export coupling (OCAEC) with class B (2
instances)

public :
C mal(int i);
private i
B bi;
D di;
}s ;
class B : public class D
public : '
int mb1(D &d);
private :
Ccl, c2;
}s
class C
{
public :
int ncl(void);
private :
int k;
A al, az2;
}s
class D
{
public :
void md1(int);
b

For class C : Class-attribute import coupling (OCAIC) with class A (2
instances)
For class A : Class-attribute export coupling (OCAEC) with class C (2
instances)

Figure 1 A simple C++ example for calculating metrics. This type of class definition code is

typically in the interface ".h" files.

If we consider all the access types (public and private, in this case), we can see that class B, for example,
has two attributes which are both of type C. If we count coupling instances, then it means that
OCAIC(B)=2. Class B has one method whose argument type is of type D. As class D is a parent class of
class B, we are talking about ancestor coupling, i.e., ACMIC(B) = 1. Class B has only one parent, class D,
so its DIT is 1 (the DIT of class A is 2, because it is a subclass of class B, which is a subclass of class D).
Similarly we can calculate all the metrics for all the classes. At the end, we would obtain the results

presented in Table 2.

Metric Class A Class B Class C Class D Class A Class B Class C Class D
OCAIC (instances)
OCAIC (classes)
OCAEC (instances)
OCAEC (classes)
OCMIC (instances)
OCMIC (classes)
OCMEC (instances)
OCMEC (classes)
ACAIC (instances)
ACAIC (classes)
DCAEC (instances)
DCAEC (classes)
ACMIC (instances)
ACMIC (classes)
DCMEC (instances)
DCMEC (classes)
Number of attributes
Number of methods
DIT

LOC

o
o
o
o

N[FR|IN[O|O|O|O(O|O(N|IN|(O|O(FR |k |FkIN|O
[l Ll [®l el (el ol (o] o] (o] o] (o] (o] (o] (o] (o] (o) (o]
(el Jllelle] o]llo] o] (o] o] (o] o] (o] o] (o] (o] (o] (o) (o]

Blr|rv[olo|k|kk|r|o|lo|o|o|o|o|o|o|r|n
Rlo|lr|w|o|o|o|o|o|o|o|o|r|r|o]o|r Nk
~N|o|r|o|r|r|o|o|r|r|o|o|o|o|o|o|o|o|o

Eiv[e|o|o|o|o|o|o|o|o|o|o|o|r|r|o|o|o|o
Elolr|o|o|o|o|o|o|o|o|o|r|r|o|o|o|o|o|o

=Y
=Y

10

~

all attributes and methods only public attributes and methods

Table 2 Metrics as calculated for the sample code from Figure 1.

Note that the second part of the table shows metrics if only public attributes and methods are taken into
account. We can see that there is less coupling, because all the attributes in the sample code in Figure 1

are private, so the coupling is related only to methods (which are all public in this case).

1.2 The ES1 Environment

The ES1 metrics analyzer has been implemented on top of the Source Navigator (SN) IDE. SN is a very
powerful IDE by itself, especially for the purpose of going through large amounts of code trying to find

cross-references and links amongst classes.

We will take a few moments here to explain the choice of using SN, and the advantages and
disadvantages. SN is a product made available by RedHat under the GNU General Public License. You
can download and install it right away from <http://sources.redhat.com/sourcenav/>. It has been around
for a number of years and therefore it is stable and has a relatively large user community. SN extracts
quite a number of relevant elements from the source code and stores them in databases, which we then
use to compute the metrics. This is ideal since it is now possible, in principle, to compute the same
metrics for other object-oriented programming languages. Furthermore, eventually the ES1 system and its
successors will be integrated directly into SN so that metrics will be available as a user navigates through

the code.

If you wish to use SN by itself (i.e., you are not interested in the ES1
system), you can download SN directly from the address above. However,
if you wish to use ES1, you must use the version of SN bundled in the ES1
distribution as we have made some changes to SN. ES1 is based on SN

version 4.52.

Currently, there is an SN verison 5.0 (just released a few weeks ago!). We
have not completed evaluation of SN 5.0 with ES1. Therefore, we reiterate

that you must use the SN system that is bundled with ES1.

2 Downloading and Installing ES1

The ES1 tool works only on Linux RedHat 7.0. We do not make any claims about its suitability or

applicability under any other conditions.
To download and install ES1 follow these steps:

1. Download the file SN452_ES1 _linux.tar.gz from the following location

<http://www.seg.iit.nrc.ca/~elemam> under the "Tools - Metrics" tab.
2. Save itin the directory where you want it installed.

3. Unpack the downloaded file. Type in the console window in the same directory :

tar xvfz SNA52 ES1 |inux.tar.gz

This will create the directory SN452 ES1_linux and all the subdirectories (Figure 2).

Flle Edi Seftings Help

[martac™] tar oofz SNAEZF ES1_lirus,ter,qz
SME2 ES1_liree_unpacked’
SM4E2_ESL_ I irwee_unpacked share

SHTE_ESL_ | e rpackadsharey sl L B ibut i 158

ST P51 | b _ureacknel share e | 1By] bk £, 8

LT ESl L ieies unpack s shaie 00k LIRS ShpaSd,a

A2 ESL_ Lirae_unpacked share/sdo/ LBl ibke 1B, 1,8

SE2 ES1_ L imie_unpacked shars/sdo’L1B] sbarptools, a

G52 EEL_ L irwee_unpack sd shars sk sp S

M52 ESL_ 1 ireo:_vrpack sd share sk ap 1w
SE2_ESL_1iree_unpack ad dhare ik ap 1 /ol dat shase,”

SET_ESL_ 1 irmed_inpack pal g ol Sp 1S da b el e | iy

ST BT L i ik sl s e i 8 da i i i e Tk L

SMAED PS1 Lireed_unpackedshare sl ap i S dat abasewrans LesAdbagry, o

SM4E2 ES1 lireee_unpacked share/sdodapi ool

G452 ES1_ 1 irme_unpacked share/ sdo/ap i o L idatabas e

G452 P51 1 ires urpack sd share sdk/ap 1 to L Adat ab s e e amp Lo sy

M52 ESL_ 1 iree:_unpacksd dharesdkSsp 1 to Lidat shase e aep Les ol 1-Freg. th
SEE_ESL_ 1 irmec_unpack pd dhares ndkSsp i e L Adab shasadexsep | eet | obber bz]
SHRT ESL L ieiee ik el i il O § 0 | S ola bonbacii e sonied s eong Lant e, Ll
SN ES] L e iargnch il s ok T Ll e i L e § o, B]
A2 ESL_limisd_unpacked sharesdo’ap i tol Adatabaseesmep | eswal bl o ludes, tel !

Figure 2 The tar command to show the directories that are created when you unpack the ES1 file.

4. Change directory to SN452_ES1 by typing : cd SN452_ESL_I'i nux_unpacked

5. Run INSTALL by typing :| -/ ' NSTALL

(see Figure 3)

Flle Edi Sefings Help

[martac™1% od SME2 B2 | irue_unpacked’
[martay /Sd52 E91_Lirus_urpacked]s /IHSTALL I

Figure 3 Running the installation command

6. The tool installation starts. It asks the user to accept the licence (Figure 4), and after that it prompts to
accept or change the offered installation directory (Figure 5). Make sure you have write permission for
that directory.

Don't choose for installation the directory
‘ SN452_ES1_unpacked.

T, 991 P iy ¥ rukien_
=11 e D00, BECE WS, OUT10- Y LES Eebipii &
- L B - a0 - 1] o B B B

Enter Installation Target Dirmctory:

ome/mara/SH452_ES1

Figure 5 The window where you will need to provide the installation directory.

7. The installation then continues and asks for the mail tool to use to send bugs. If you are not certain

what to put leave it as is (default is mailhost).

8. The installation then prompts for the type of demo projects to install (see Figure 6). These are demo
projects for Source Navigator, and it is up to you to make a choice. They are not essential for ES1

tool.

Salect demanstration projects to install;

i CiCes Project
i Java Prjact

_1 Fartram Project
1 Coboll Frojeci

| Assembly Project
| Monop gam

Figure 6 The window where you can select demo projects for SN

9. The installation proceeds and shows a message to add the installation directory to the environment
variable PATH when finished (Figure 7). If you want to have an easy access to the tool from any
directory, it is useful to set PATH in the command line (Figure 8), or modify the startup file of your
shell to add ES1 to your PATH. Setting PATH in the command line is local only to that terminal. If you
want to set PATH to be the same for every terminal window, you should edit . bashr ¢ file found in
your home directory (using Emacs as editor, for instance) by adding the line which sets PATH (see

Figure 9). The change will take effect with the next terminal opened.

Source - Navigaior with ES1 design meircs anabyner
installation i oomphebe.

Flease inchglde homeaimartaS3HEE ES) n in your PATH
amvinmant vanahie,

To siart Source- Mavigator, type:
momeimarta! SNAS2 51 infsnavigalor

T use ESN Ces design melrcs analyrer ploase refar to

e documentalion in ;
Mmomedmarta/SN4RE B SshamerE 51

Exit

Figure 7 The screen informing the user to modify the PATH environment variable.

Setting PATH
Launching SN <[] [marta:”/SH452_ES1/binl$ snavigator &

10.

marta: Shome/marta/SN452_ES1/bin

| File Edit Seftings Help

[marta:™/SM452_ES1_linux_unpacked]$ od ..
[martaz™]$ cd SM452_ES1
[marta:™/SH452_ES11$ cd bin

‘ [marta:™/SH452_ES1/binl$ 1=

[marta:”/SH452_ES1/binl$ PATH=$PATH: ‘homesmarta/SH452_ES1/bin K
[marta:™/SH452_ES1/binl$ expart PATH

[1] 1RE35
[marta:™ SN452_ES1/binl$ []

~L

Figure 8 Setting the PATH environment variable on the command line.

BuFfors Files Tools Edit Ssarch Pule Insert Help
Bl .bashrc

#H User specific aliases and functions

Spurce global definitions

if [=¥ fetcsbashre 1) then
. fetoshashrc

fi

FRTH=EFATH: /home/martaSH45E_ES1.bin

Figure 9 Setting PATH in .bashrc file

Now both Source Navigator 4.52 and ES1 are installed and ready to use. Directory SN452_ES1/ bi n

contains, among others, snavi gat or (the script for running Source-Navigator) and ES1 (the script for

running the design metrics analyzer). Figure 8 illustrates how SN is started using the snavi gat or

script.

10

11. N.B. You can remove the directory SNd52_ES1_| i nux_unpacked by typing :

rm—-rf SN452_ES1 | i nux_unpacked

in its parent directory. It is advised to keep the downloaded file (SN452_ES1_| i nux. tar.gz) for

eventual future installations.

3 Example of Using ES1

ES1 is a Tcl script (see [12, 15]) that extracts information from database files produced by Source
Navigator, calculates design metrics and outputs them in a file easily imported by MS Excel or Sun’s
StarCalc. It is therefore necessary to first create a Source Navigator project from the source C++ files we
want to analyze, and then to run ES1. Note that only the . h files are required, so it does not matter if the

. cpp files are not available. Here we explain in details how to use both tools.

Sour ce

Metrics file (can be imported
Source code P»| SN database into MS Exc(el) P

The ES1 distribution comes with two example systems that can be used to get used to how ES1 works.
They can be found in SN452_ES1/ shar e/ ES1/ exanpl es directory. One is smaller database library called

MetaKit (for more information visit http://equi4.com/metakit/). It can be found in the subdirectory

Smal | Exanpl e. The other one is a more substantial system, a GUI framework called V

(http://objectcentral.com/vgui/vrefman/install.htm). It can be found in the subdirectory Bi gExanpl e. For both

examples we extracted only *.h files from the source code, since our tool analyzes only header files. In

the next chapter we show how to use ES1 on the second example.

3.1 Using Source Navigator

As noted earlier, SN is an open-source code navigation tool in which we incorporated our C++ design

metrics analyzer. It is invoked from the command line by typing :

$hone_di rect ory/ SNA52_ES1/ bi n/ snavi gat or

where $hone_directory should be replaced with the real home directory of SN452_ES1. If the

environment variable PATH is set, it can be invoked just by typing snavi gat or at the prompt.

11

Here we will explain how to make a Source Navigator project from the sample code included with the ES1

tool. We start with a number of . h files from the application called v.

1. Upon invoking Source Navigator for the first time it offers the user to create a new project or to find

existing ones (Figure 10).

Source-Navigator Projects

Mew Froject.. |
Browse... |
Zancel |

Figure 10 The SN startup screen when there are no projects defined.

2. When the user clicks on the New Project button, a window pops up asking for a project name and
source files destination. It offers a default project name and directory (Figure 11), but we will change
it. We will call this project v. proj, put it in the / hone/ st oj anov directory and use an example from
/ SNA52_ES1/ shar e/ ES1/ exanpl es/ Bi gExanpl e/ v directory (Figure 12).

e Oio you wand b aulomstically craale & Source-Mavigstar Prject bassd an:

Project Fia i-'h-:-u:."l-.-t.r:a.-'m‘:: ES1/banshin. prag |
Agdd Deracion i-"hu-l."l.u‘.l.l’LE-HEi_E!i].l":-'.r. " |

_moes |

N Inciude Subditecionas W Build Croes- Referencs databasa

QK

Project Ediar | cancal |

Figure 11 The window where the specific details of a project are provided.

12

homa fmasbafv. proj
s Awar 0y SRA5E_ESD fehare EQ] fanamp las Bl gEaamirle sy

i

ok | PoecEmw | cocw |

Figure 12 Window when the default project specifics are edited.

3. After clicking on OK, Source Navigator starts parsing the project files and at the end pops up a

window with the information on all files (Figure 13).

.. MBugExample fvlfride
. . amgle SR finc ludsny
. mmplesedine ludexse
. . mmple A Fise Ludes v
.. aple e fine lndexse
. maplm fwfinc ludexyr
. ample e fineludeny
. mmpleSeiine ludesse
. . mmle S fine ludes v
.. awpLe sodine Indsxse
. muplm e fine ludas e
. . ampile s rine ludey
. mmpleszding ludense

.. amplesefinc ludexse

Figure 13: The SN window with all the files in the project.

13

4. Now we have created a SN project. By doing so SN has created a number of databases that we use

for the purpose of calculating design metrics. Here we can close Source Navigator windows. Of

course, it is an excellent code navigation tool and we encourage the user to use it as such. For more

information on how to use Source Navigator, see :

<http://sources.redhat.com/sourcenav/online-docs/userguide/index_ug.html>.

5. By parsing C++ source files, SN created the database files that are put by default in the

$project_home_directory/.snprj directory (Figure 14).

| File Edit Settings Help

[martar™ SM452_ES1/binl$ od
[marta:™]$ l= v.proj

WL proj
[marta:™]s lz .snpride.#
Lshprjde,l LShprjiu,e LEhprjdv, fr

Lshprjde.by LEnprjdv,ec csnprjde,fu
shpride.el snprjdue,f LERPE S, gy
Bhprjdv.con Lenprjde.fd Lenpride.icl
LShprjde.cte LEnpride.fil o Lsnpride.in
[marta:™1s |

=y =T AT U
LERPE A, iy
LERPE A, ma
Lzhprjdu.md
LERPE A mi

LSRprjiuLt
Lshprjiu,to

~L

Figure 14 A listing of the database files that are generated by SN.

Some of the database files are used by ES1 to extract all the needed information for calculating metrics.

Each file is a table that contains specific symbol information. A list of the database files used, along with a

short explanation of their content is given in Table 3.

14

File Table Record Format
Suffix | Description

cl Classes name?start_position?filename;end_position?attributes?{}?{class template}?{}?{comment}

in Inheritances | class?base-class?start_position?filename;end_position?attributes?{}?{class
template}?{inheritance?template}?{comment}

iu Include included_file?start_position?include_from_file;0.0?0x0?{}?{}?{}?{}
iv Instance class?variable-
variables name?start_position?filename;end_position?attributes?{type}?{}?{}?{comment}
ma Macros name?start_position?filename;end_position?attributes?{}?{}?{}?{comment}
md Method class?name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?

definitions {arg_names}?{comment}

t Typedefs name?position?filename;attributes?{original}?{}?{comment}

un Unions name?position?filename;attributes?{}?{}?{comment}

Table 3 List of SN database files used as inputs for ES1.

Source Navigator comes with a Tcl interpreter called hyper, which contains the Tcl commands needed to
manipulate the project database. ES1 is implemented entirely in Tcl, using SN Tcl commands for fetching

tables from the database and standard Tcl commands for extracting the information from them [12, 15].

3.2 Using ES1

Now that a Source Navigator project is created, along with the database files we can invoke ESLI.

Currently, it works only from the command line.

1. ES1isinvoked in a similar way as Source Navigator, but with arguments. Type :

$hone_di rect ory/ SNA52_ES1/ bi n/ ES1 proj dir proj name

where $hone_di rect ory should be replaced with the real home directory of SN452_ES1.
Command line arguments are :
projdir : the directory of the .proj file.
projname : project name (without .proj)
acces_option : can be —pri v, - prot, - pub or —al | , depending on whether we want to analyze
private, protected, public or all variables and methods

-myhelp : prints help message (Figure 15).

15

| File Edit Settings Help
[marta:™]$ ES1 i
Uzage: Ahomesmarta SH452_ES1/bin/ES] projectdir project_name access_option[-pub,
-prot, —-priv or -alll, For help: fhomesmartaSH452_ES1 bin/ESl -muyhelp
[marta:™]$ ES1 -myhelp
zage: JhomesmartasSH452_ES1/bindESL projectdir project_name acces_opti
on[-pub, -prot, -priv or -alll, For help: shome/martasSH452_ES1/bindESL —muhelp.
projectdir home directory of the Source Mavigator project director
y LLsnprj)
project_name name of the SN project (without ,progj)
-pub treat only public attributes or methods
—priv treat only private attributes or methods
—-prot treat only protected attributes or methods
-all treat all attributes or methods
-myhelp thiz help mnessage
[marta:™]$
)
/

Figure 15 Example with ES1 giving the usage and help outputs when invoked.

2. For our example (v.proj) we should type (if PATH is set) :

ES1 /hone/ marta v -all

If PATH is not set it should be :

$hone_di rect ory/ SNA52_ES1/ bi n/ ES1 / horme/ marta v -all

Upon pressing ENTER, the metrics extraction starts. Messages are displayed while waiting (Figure 16).
For large projects it can take some time. For example, analyzing the v project on Pentium 11 400MHz
128MB RAM takes about 2 minutes.

16

File Edit Safings Halp

[martac™ 1% ES1 , « —-all

Extracting classss ... (pleass wait)

Estracting typedefs ... [please wait)

Extracting includsd files .. (pleasss wait)
Estracting Inhesitancs Info ... (plesse walk)
Extracting unions ... (please wait)

Fnaluzing abbribute types ... (Ppleas waltl)
Fnaluzing method return sand bypss .. [pleaze wait]
Craatirg mabrics file ... (please wait)

Fintshed collecting metrics (bhanks for waiting),

MITE & Fetrics cam b found in & Fils Fenprifv-sll-coupling,csv. For best lisi

bility open 1t with Sun's Starlale (Liree) or HS Excel (Windows) uzirg comsa sep
arated colusns,

[mar-ta:™15]

.—}‘l

Figure 16 The notification messages provided by ES1 while it is executing.

3. When the execution is finished, two new files will appear in . / snprj directory : v-al | - coupl i ng. csv

and v_coupl i ng. | og. The first file contains calculated metrics, and the second one log messages

(like whether a database file was missing, for example) (Figure 17).

File Edit Satings Help

Imarta: ™1 la o)
e jiv-allcouplirg.casy oenprjue.e Enprifv fu cEnpriduv.ma

AT | LEnpe et Lsnprifv.ow Lsnpr iy ed

SErpr v by LEnpr e f JEnprifv.icl csnpridv,mi
LErpr]de,cl Snpeldefd Lsnprifv.in Lsnpridvat
SErprjdv.con mpr e Fil o cEnprifvaiu csnprifvto

= T gt fe LanprifLiv snpeddv_ooapl Erg. Log

[marta:™1% wors . srprifv_coupling. log
File ./ .anprjfv.un dossn't exlst

Mo templates in the progeck,
[mar-ta;=15 [

.—‘l||

Figure 17 : After extracting the metrics, two additional files are created.

17

4. Finally, we should use MS Excel or Sun’s StarCalc to visualize the metrics file. Use comma separated

columns when importing the file, if it is not imported automatically (Figure 18).

,-:Iﬁhlhl'-':f‘l'-IﬂDﬁﬂ'ﬂ!M

Il FART 1B T oo

A% redilmesd - @

il - - B EEEEAEXK, WA EE -4

=il El
) 5]

&l = [Class Ware
L2} =] c | b F L]

‘\.Ilr| part Frad P:llrFllr:ml- TR [ret: CAIC [ciwn CAEC |_r|l: Capi |rIl Cha :|r!I CPIC o CMELD fira CHEC [chalagd |;|1|-'I.I\.AII"_' e
2 |Evsakant 1780 A7 5 ENAS1_EE i 1] 1 [i 1 1 a

3 | ChlesaPaykiDiy 1401 3.7 SHEST EE 2 2 1} a 1 1 1] 1] a

a4 | CarmpeFar = a7 TR T l n | L e a 1] 1] 1] 3.
| & |Colar Pal Erimnl 39 SrET EX 1 1 1 I 7 1 1] 1] a]
B | CommmandSdPad 122 0E 136.10 SheST B] 1] 2 2 [i 1] 1] a =
T | Cornnmani Diet SR ma AT ShaT_ET i 1] E| 1 [t i 13 19 a —_
B | DiCmiList A X270 ThaE BT 1 1 | I 0 a 1 1 1] =lla.
8 LwesProgeciCanieg 180 R = 2 2 a a 1 1 1] 1 a =
0| Ly b i E3ME B3 25 ENaS1_EE] 1] k| 1 [i 1] o a A
11 | Lalsa CeiPan SBME 1205 ShasT EZ i 1] E| 1 [i 1] 1] a —
12 | MR RN o my LIPS L Pl e |l n 1 L e a 1] 1] 1] E
13 | Werudstarn dEma 587 Sresl B F 2 1 I [i 1] 1] a =
14| Warednks 4009 4.7 SNET EE i 1] 1 I [i 1] 1] a T
15 | FiiereiBitiar .M 577 ThEET_ET 2 2 1 I [il 1] 1] a

6 | Feninia xmima E o | Pl e il n 1 I [a 1] 1] 1]

7 | Parealnt M 7 SreET ES 1 1 | I [i 1] 1] 1]

18 | Fnus o B5.7 Sheal ES D 1] 2 2 [i 1] o a

18 | Eormlibar 397 ks P ad 1LME 114 37 Zha5T_EE i 1] | I 0 il 1] 1] a

A | Serolbor 4P ar LA L e L el o il 0 1 I e a 1] 1] 1]

I | Shape 13.01 M7 Sresl ES 1 3 1 I [i 1] 1] a

22 | Bl 330 kP i sBME 700 ShEET ES i 1] 7 T [i 1] 1] a

23 | EmpledPan =1.ME B0 EhEsT_ET O 1] T T [i o] 1] a

Al | ke S InanR e L mG 174 37 ST s E o 1] | 1 u 1] 1] 1]

35 | Sk g 3 n e 1051 SrET EX] 1] 1 I [i 1] 1] a

26 | Eladuslisi 21.0M9 6.7 el EE 1 1 1 I [i 1] o a

27 | TarssList 1.m9 357 ThaET_EE 1 1 1 I [il 1] 1] a

28 | Thressl{1: by Pari ERme ALY T _E o 1] L} L} [k u 1] 1] 1]

28 | ThrwaDP art 4B D6 533 Sresl ES] 1] B [} [i 1] o a

30 | Toxpg 3P an ETME 9.0 SnaRT EE i 1] 1 I [i 1] 1] a

3 [WeiredL ks 3ama .7 ThEET_EE 2 2 1 I [il 1] 1] a

n__' mmaeklsg =l 1] 1) i Bhs L Pl e 1 1 1] il I i 1] 1] 1]

38| CommandSdlsasflae 055 1.1 SrasT ES 3 3 1} a [i 1] 1] a E
3| Cormrmas el d32ms 1430 SheT_EE 4 4 1} a [i 1] 1] a

35 | _LaneDdCbexsAec =] AN EhEET_EE] 3 0 i} 0 il o 1] 1] - g
CIERCNCRRSE ST 14l I | G
Ready 1 | 1| I I I

Figure 18 Example of what you should see when opening the .csv file in MS Excel.
Note that first two columns after the class name give start and end position of the class : first number
before dot is line number, and the second one is the position of the character on that line. The format is
taken directly from Source Navigator. It is important to have position in order to distinguish between

classes with the same name.

4 Special Cases

ES1 works only on C++ code, but not all the subtleties of the C++ language are covered. This is partially
because Source Navigator's parser does not provide enough information, or because it has been left for
future development by us. In this section we will explain the limitations of ES1. In addition, some cases

demand more explanations on how the coupling is measured because there were implementation choices

18

that had to be made. Most of the examples are taken from the ACE (Adaptive Communications

Environment) library [13, 14].

It should be noted that, based on our experiences extracting metrics from a number of different systems,
the limitations of ES1 are minor given that they deal with some cases that do not occur very often (at least
in the systems that we have studied thus far). Furthermore, in practice, the extracted metrics are used as
part of statistical analyses. The choices we made (explained below) will usually not have a noticeable

influence on the results of the statistical analyses.

4.1 Method pointers

Method pointers are not parsed well by Source Navigator. In the case showed in Figure 19, method
pointer ACE_QOS_CONDITION_FUNC would be presented in the database as int(*)(), i.e. only the return

type (i nt) will be present in the database, whereas method argument types will be omitted

typedef int (*ACE_QOS_CONDI TI ON_FUNC) (iovec *caller_id,
iovec *caller_data,
ACE_QoS *socket _qgos,
ACE_QoS *group_socket _qos,
iovec *callee_id,
iovec *call ee_data,

u_l ong cal | backdat a) ;

ACE_SOCK_GROUP *g, CM coupling

class ACE_Export ACE_Accept_ QoS Parans CA coupling
{

ACE_Accept _ QoS _Parans (ACE_QOS_CONDI TI ON_FUNC qos_condi tion_cal | back
u_long callback_data = 0);

ACE_QOS_CONDI TI ON_FUNC qos_condi ti on_cal | back_;

Figure 19 Example of a method pointer to illustrate its impact on computed metrics.

(iovec, AC QoS, ACE SOCK GROUP, u_l ong). So, we had no choice (without changing the parser) than

to limit coupling measurements involving method pointers to their return types.

The question is how to consider coupling with method pointers: as class-attribute or class-method
coupling ? We decided to treat it as class-attribute coupling if a method pointer is used as an attribute,

and as class-method coupling if it is used as a method’s return type, or as a method’s argument.

In fact, in the above case, there will be no coupling, because the method pointer’'s return type is i nt. If
the method pointer's arguments were in the database, there would be coupling between

ACE_Accept _QoS Parans and method pointer’s argument class types (i ovec and ACE_QoS).

19

4.2 Macros

4.2.1 Macro definitions

Source Navigator does not pre-process the code, so we did not treat macro definitions even if they can
introduce coupling. Figure 20 shows an example of such non-treated coupling. The advantage of not
performing any pre-processing is that SN can be very robust compared to other C++ metrics analyzers
that we have worked with. For instance, we have been able to start ES1 collecting metrics from systems
within 5 minutes of installation. For other metrics analyzers we sometimes had to spend a few months

setting up the environment before metrics could be computed.

if defined (ACE_HAS TEMPLATE_TYPEDEFS)

define ACE_MVAP_MEMORY_PCOL ACE_MVAP_Merory_Pool

el se

define ACE_MVAP_MEMORY_POOL ACE_MVAP_Menory_Pool , ACE_MVAP_Menory_Pool _Option
endi f
cl ass ACE _Export ACE_MEM SAP

#if (ACE_HAS_POSI TI ON_| NDEPENDENT POl NTERS == 1)

typedef ACE_Mal | oc_T<ACE_MVAP_MEMORY_POCL, ACE_Process_Mitex, ACE_PI_Control _Bl ock>
MALLOC TYPE,

#el se

typedef ACE_Mal | oc_T<ACE_MVAP_MEMORY_POCOL, ACE_Process_Mitex, ACE_Control _Bl ock>
MALLOC_TYPE;

#endi f

MALLOC TYPE *shm nal | oc_;

Figure 20 Example of macro definitions.

In this case our tool will find class-attribute coupling between ACE_MEM_SAP and ACE_Process_Mutex,
ACE_PI_Control_Block and ACE_PI_Control_Block, but not with ACE_MMAP_Memory Pool and
ACE_MMAP_Memory_Pool_Option (macro ACE_MMAP_MEMORY_POOL is not treated).

4.2.2 Macro if-else statements

Macro if-else statements pose a different problem. If definitions are protected by macro statements, there
can be more than one typedef or class with the same name in the same file. Preprocessing would
certainly remove this ambiguity, but when trying to use unprocessed code, one would have to check both
definitions. For this reason, we treat them as distinct couplings. Figure 21 shows such a case. Here our

tool would find class-attribute coupling between ACE_ATM Accept or and both ACE_SOCK_Accept or and

20

ACE_TLI _Accept or. Furthermore, from a cognitive perspective (see [7] for a detailed cognitive model

justifying the object-oriented computed by ES1), someone comprehending the code will likely trace

through the links to other classes for all parts of a guarded #i f def .

#if defined (ACE_HAS FORE ATM W\62)

#i ncl ude "SOCK_Acceptor. h"
typedef ACE_SOCK Acceptor ATM Acceptor;

#elif defined (ACE_HAS _FORE_ATM XTI)

#i ncl ude "TLI _Acceptor.h"
typedef ACE_TLI _Acceptor ATM Acceptor;

#endi f

cl ass ACE_Export ACE_ATM Acceptor
{

Figure 21 Example of macro if-else statements.

4.3 Templates

Template classes are treated as any other class for import and export coupling between themselves and
other classes. But, template arguments pose a problem : a template class can have an attribute (or
method argument or return type) whose type is of template argument’s type. If that template argument is
of class type, there should be coupling between these two classes. The problem is that we cannot know
the exact type of template argument until that template class is used, and template arguments are set
with real types. So, in order to measure this kind of coupling, we have to find every single usage of that
particular class (in attributes or in methods) and to associate template arguments with all the types they
can possibly have. Figure 22 illustrates this case.

21

tenpl ate <ACE_MEM POOL_1, class ACE_LOCK>
cl ass ACE_Local _Nane_Space : public ACE_Nane_Space
{

t ypedef ACE_Al | ocat or _Adapter <ACE _Malloc <ACE_MEM POCOL_2, ACE_LOCK> >
ALLOCATOR;

ACE_Name_Space_Map <ALLOCATOR> *name_space_map_;

tenpl ate <cl ass ALLOCATOR>
cl ass ACE_Nane_Space_Map : public MAP_MANAGER
{

public:
ACE_Nane_Space_Map (ALLOCATOR *all oc);

Figure 22 Example of template class usage.

As we can see in Figure 22, class ACE_Nane_Space_Map has a method argument of type ALLOCATOR,
which is its template argument type. To calculate coupling we have to know the exact type of ALLOCATOR.
Therefore, we have to look for uses of that class. One of them is in the class ACE Local _Nane_Space
that has an attribute of the type ACE_Nanme_Space_Map <ALLOCATOR>, where ALLOCATOR is in fact
ACE_Al | ocat or _Adapter <ACE_Malloc <ACE_MEM POOL_2, ACE_LOCK> >. Now we can say that the
class ACE_Nane_Space_Map is coupled to ACE_Al | ocator_Adapter and ACE Ml | oc, as well as with
types of ACE_MEM POOL_2 (macro, not treated) and ACE_LOCK (template argument, whose type will be

found in a similar way).

It is obvious that we can only consider coupling between template classes and template arguments after
the whole code is processed and every single usage of each template class is found. Template
arguments can be of template class’ parent type : we check for it when we find that there is coupling, in
order to treat it as ancestor-descendant coupling.

Template structures are not parsed in Source Navigator and therefore, are not considered by our tool. In
the following case :

22

tenpl ate <cl ass T>

struct conj _func

{
T x;

The ES1 tool will not see coupling between conj _f unc and template argument T, but the struct itself will

be considered for coupling (i.e., only template arguments will not be).

4.4 Forward declarations

If a class is not in the scope of our class, it can still be used for attribute and method types using forward

declaration :

class A

cl ass B;
B b;
}

We will consider class-attribute coupling between class A and class B, if class B is defined somewhere in
the code, i.e., if it can be found in the class database. If not (which can be the case, if B is supposed to be
defined in some . cpp file), we do not consider this as a coupling. The reason is simple: we do not have

any other way to prove that B is a class other than to look for it in the class database.

In some cases the system is a library and the declared classes will be defined in applications that use the

library. For such cases, it is not possible to account for any coupling.

4.5 Inner classes

As metrics are usually not calculated for inner classes, we do not consider inner classes in our coupling
measurements. But as the parser does not distinguish inner classes from others, we have to explicitly
check for them. Figure 23 shows an example of an inner class and its interaction with other classes. If an
inner class has an attribute or method type of some other class, we consider that there is coupling
between its outmost class and that class (in our example class A is coupled with class C, because of the
attribute c in the inner class B). If an outer class has an attribute or method type of an inner class, there is
no coupling between them (no coupling between class A and class B because of the attribute b). If a
class is coupled to an inner class of some other class, only coupling with the outer class is considered

(class C is coupled only with the class A, and not with the inner class B, because of the attribute ab).

23

class A
cl ass B;
B b;
class B
{
A a;
C c;
}
}
class C
A : B ab;
}

Figure 23 Example of an inner class.

4.6 Parent classes

The simplest case of ancestor-descendant coupling would be if an attribute or method type is of the
parent's class. But there is another case which is also considered as ancestor-descendant coupling. If, for
instance, an attribute or method type is a t ypedef defined in a parent class, we consider it as ancestor-
descendants coupling even if the t ypedef turns out to be a primitive type. The reason is that in such a
case, when trying to understand the code, we will have to look into the parent class to resolve the
typedef.

4.7 Complex types

We call complex types of the form : X::Y. X can be either a class or a t ypedef (in which case its redefined
type is found). Y can be either an inner class (in which case we consider only coupling with X and not Y)
or a typedef defined in the class X or its parent class, in which case an effort is made to find a type

redefined by that t ypedef (if it is of a class type, we consider it as coupling).

In the case of templates we could have the following case:

tenpl ate <cl ass A>
class B

{
A : C x;

24

In this case we consider coupling between class B and a class that can be a type of the template
argument A. But we do not go further : we do not test if that class has a field of the name C (inner class or
t ypedef). Eventually, it could be done, but as we did not encounter such cases in a number of large

systems that we analyzed, we left it unconsidered.

4.8 Unions

Unions are not considered as base classes, but we treat them as such and consider that there is coupling

between a union and its elements, if they are of a class type (as we do for structures).

4.9 Namespace keyword

Source Navigator does not support C++ keyword namespace. This leads to scoping problems which
cannot be resolved if namespace support is not added. Right now, the scope of a class is the file in which
that class is defined and all the files included by that file. The namespace keyword does not require file
inclusion : a type defined in the same namespace can be in a file not included by our class' file, and still
be visible by our class. If we decide not to define the scope as we did, and to consider all project files, we
can have an error in scope when namespace is not used. So, for now, until the C++ parser is changed, it

is not advised to use this tool for C++ code that contains namespaces.

Even when namespaces are in the same file, classes are not seen by SN if they are declared out of the
namespace (in the example below, class A is declared as N: : A, because it is part of namespace N). In

this case SN will find only class B, and not class A, which again can lead to erroneous metrics.

namespace N

class A
}
class N: A
{
}s
nanespace M
{

class B

{

I
}

25

4.10 Other keywords

The keyword t ypenane is not supported by Source Navigator, and our tool simply ignores it (like it ignores

keywords virtual and inline and primitive types). It treats everything as possible types, so it should not be

an issue.

5 Software License

This software is copyright © 2000-2001 by the National Research Council of Canada. It is published

under the GNU General Public License, which is reproduced in the distribution in a file called

"GNUGPL.txt", for the benefit of the software engineering community. This software comes with

absolutely no warranty, but we would appreciate bug reports and we will endeavor to fix them.

6 References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

S. Chidamber and C. Kemerer, "A Metrics Suite for Object-Oriented Design". In IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

K. El Emam, "Object-Oriented Metrics: A Review of Theory and Practice,” in Advances in
Software Engineering: Topics in Comprehension, Evolution, and Evaluation (to appear), O. Tanir
and H. Erdogmus (eds.): Spinger-Verlag, 2000.

K. EI-Emam, S. Benlarbi, N. Goel, and S. Rai, "A Validation of Object-Oriented Metrics,"
Technical Report, National Research Council of Canada, NRC/ERB 1063 1999.

K. EI-Emam and W. Melo, "The Prediction of Faulty Classes Using Object-Oriented Design
Metrics," Technical Report, National Research Council of Canada, NRC/ERB 1064 1999.

K. EI-Emam, S. Benlarbi, N. Goel, and S. Rai, "The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics". In IEEE Transactions on Software Engineering (to appear),
2001.

N. Fenton and N. Ohlsson, "Quantitative Analysis of Faults and Failures in a Complex Software
System". In IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 797 -814, 2000.

D. Glasberg, K. El Emam, W. Melo, and N. Madhaviji, "Validating Object-oriented Design Metrics
on a Commercial Java Application,"” Technical Report, National Research Council of Canada (to
appear in the Journal of Systems and Software), NRC/ERB-1080 2000.

W. Harrison, "Using Software Metrics to Allocate Testing Resources". In Journal of Management
Information Systems, vol. 4, no. 4, pp. 93-105, 1988.

M. Kaaniche and K. Kanoun, "Reliability of a Commercial Telecommunications System". In
Proceedings of the International Symposium on Software Reliability Engineering, pp. 207-212,
1996.

K.-H. Moller and D. Paulish, "An Empirical Investigation of Software Fault Distribution”. In
Proceedings of the First International Software Metrics Symposium, pp. 82-90, 1993.

N. Ohlsson and H. Alberg, "Predicting Fault-Prone Software Modules in Telephone Switches". In
IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 886-894, 1996.

26

[12]
[13]

[14]

[15]

J. Ousterhout, Tcl and the Tk Toolkit: Addison-Wesley, 1994.

D. Schmidt, "A System of Reusable Design Patterns for Communication Software," in The Theory
and Practice of Object Systems, S. Berzuk (ed.): Wiley, 1995.

D. Schmidt and P. Stephenson, "Experiences Using Design Patterns to Evolve System Software
Across Diverse OS Platforms”. In Proceedings of the 9th European Conference on Object
Oriented Programming, 1995.

B. Welch, Practical Programming with Tcl and Tk: Prentice Hall, 1997.

27

