Strategic Observations and Thoughts on a System Model for Security Metrics/Measurements

> Why can't we get traction? Dr Greg Larsen

Agenda

- Overview...
- ...Problem Indicators...
- ...An Approach...
- ...Some Thoughts to Construct them by...
- ...Some Parting Thoughts on focus and priority

Overview Security *ISN'T* tack-on, add-on, applique' or a subordinate feature of nets, systems, or components! It is an integral feature of a capability - not separable from the whole Getting the metrics right means making security more than just a measurement in the supply chain and instead an *integral part* of the larger business equation that represents the entirety of dimensions that result in progressive security improvement! Key words: efficacy, affordability, satisfaction, expectation, performance, alignment, adjudication Words that have meaning to both user/consumer and provider/performer Ie demand/supply and demand/supply environments Perhaps we need a system model for security metrics/measures that enables a holistic and multiple but consistent views of security -- a new or enlarged synthesis of security evaluation frameworks, methods, and analytics

- NIAP/CC, T&E, M&S, SE, OR...etc

Asset Category Business Model Variation

· Asset Category Business Model Variation

- Variations affect metrics/measures choices

- HW <-- hold production complexity relatively constant <-- gain performance from production experience <-- liability substantially belongs to producer
- SW <--- increase performance complexity <-- gain price from performance experience <-- liability substantially belongs to buyer
- System <-- hide complexity <-- gain from integration experience <-- liability usually shared by producer/buyer
- Net-net
 - HW investment and performance targets "crisp" and risk-taking economically well-disciplined
 - SW investment and performance targets "fuzzy" and risk-taking not economically well-disciplined
 - System investment and performance targets risk averse and risk assessment substitutes for risk management

An Approach

- A system model for security metrics
- Business system Approach (with caveats)
 - Capability (Performance) / Cost (Price) Curves
 - Features, Characteristics, Factors
 - Of product
 - Of process
 - Of comparative alignment, synthesis and integration
 - Premise: Accumulated experience has two primary effects
 - Cost of production tends to drop with experience (economies of scale and learning curves)
 - Builds new capabilities by improving existing capabilities or development of alternatives (advance of S&T and innovation)

Learning Curves/Technology Progress What is experience?

- Experience
 - Effects on both costs and capabilities as experience accumulates
 - Generally lowers per/unit costs of production
 - Generally enables capability performance improvements along a profile of the following features constituting a performance "package"
 - Functions
 - Acquisition Costs
 - Ease of Use
 - Operating Costs
 - Reliability
 - Serviceability
 - System Compatibility
- Current operating point in P/P domain is one profile
- Future needs is another operating point in P/P domain

KPP General Set Security Specific (Consumer) - Functional Performance - Conf, Integ, Auth, Avail, Non-Repud - Ease-of-Use - Single-Sign-on - Reliability False Positives _ - Serviceability Configuration System Compatibility _ - Etc. **Operating Cost** _ Expected cost per event - Acquisition Cost _ Volume, Variety, Velocity – TCO - Price per "lb of security"

23

Notional Poadman				
2005	2010	2015	2020	
Buy More "Stuff" better		Operate Better Focus: Buy sufficient quantity/capabilities		
Engineering Practices Program		Empirical Focus: Best Practices Understanding 25% reduction in program variance through better controls over existing processes		
Technology Development Program		Process/Tools Focus: 50 % Improvement Decrease program variance to less than 25% for 90% of programs		
Basic Research Program		Phenom/Understanding Focus: 200% Productivity Improvements Repeatedly engineer software intensive systems predicting product quality, performance, schedule and cost within 10%		

P/P Improvement How will you satisfy priorities?			
Change	Actions	Choice	
Policy	List of possibilities	Selection of primary recommendation	
Program	List of possibilities	Selection of primary recommendation	
Resource	List of possibilities	Selection of primary recommendation	

Back-Ups

Notions

- Notion-1: Price Performance Trades
- Notion-2: Learning Curves vs S&T Advance
- Notion-3: Key-Performance-Parameters
- Notion-4: Security KPP
- Notion-5: NIST Reference on constants, units, and uncertainty

Security Profiling

- Identification of Key Performance Parameters (KPP)
- Competitive Rating

Policy Matrix

- Identified and reviewed 97 policy and legal documents (Over 5000 pages of policy documents) and derived:
 - 201 requirements
 - 56 sets of guidance materials
 - Matrix to follow
- · Researched the history of NIAP development
 - Evaluation process and criteria
 - Created a timeline (see chart)

Policy Requirements Federal Community 31 requirements (IA, Acquisition, Certification & Accreditation, Standards/Guidelines, CIP, & Reporting) National Security Community - 15 unique requirements (general, Acquisition, Certification & Accreditation, and Reporting) DoD 45 unique requirements (IA, Acquisition, CIP, Trusted Computer Systems, Certification & Accreditation, Protection Profiles, and Standards) Intelligence Community - 2 unique requirements (IA, Certification & Accreditation) NIST - 13 unique requirements (IA, Standards/Guidelines, Evaluated Products) NSA 9 unique requirements (Acquisition, Trusted Computer Systems, Evaluated Products, Protection Profiles) NIAP 15 unique requirements (IA) 53