

Ogden Air Logistics Center

Process Improvement (PI) Benefits & the need to start your measurement program at the start of your PI efforts

David Putman OO-ALC/TIS-3 DSN 777-4726 putmand@software.hill.af.mil

21 Jul. 1999

- The importance of beginning your measurement program early and growing it with the process(es).
 - The benefits we have seen
 - How our measurement program exists today

The General's Questions

- •How are you doing?
 - How do you know?
- Are you getting better?
 - How do you know?

Lessons Learned

Ogden Air Logistics Center

- A discussion on the benefits we have received would be incomplete if I did not address
 - > the problems we have encountered in trying to calculate a ROI
 - > some of the assumptions that were made
 - > defining ROI

 We are not unique, at an Air Force meeting in Fall 98 other USAF representatives reported similar difficulties

Why are the ROI calculations difficult

- At the start of our PI effort
 - CMM Level 3 was mandated
 Calculating a ROI was not planned
 - We did not know what our capabilities were
 > Consistent with a CMM Level 1 organization
 - We did not try to calculate our capabilities and baseline the information
- Assumptions / Estimates are difficult to make and easy to challenge

Defining ROI or Cost Avoidance

- ROI = Savings / Investment
 - Investment is the easiest to capture
 - What constitutes savings?
 - > For a for profit organization = increased profits
 - Reduced costs may not give a 1:1 relation to increased profit
 - > For a non-profit organization = ?
 - We used savings to the customer/taxpayer

ROI Calculations

- Tangible savings Vs Intangible savings
 - Cost reductions (tangible) are easy to apply to ROI
 - Schedule and Quality improvements along with other intangible benefits (e.g. customer satisfaction, morale) are often impossible to quantify in terms of dollar savings

Examples of data we could retrieve

- Manpower numbers
- Funding (often covered the number of people, e.g. level-of-effort)
- Actual high-level schedules (start date and acceptance date)
- Number of products delivered
- Number of SLOC, functions, etc.

ROI Data

Ogden Air Logistics Center

Used

For our initial costs
 > Limited cost data available from OFP
 > Estimated cost data using schedules in ATE
 For our present costs
 > Actual cost data

- Investments
 - > ESIP funding
 - > Estimate of additional overhead funds used ('97-'98)

ROI calculated on Cost Avoidance to our customer

ROI Data Continued

Ogden Air Logistics Center

- Not used
 - Quality data

> e.g. estimating a savings to the customer for less maintenance costs

Estimates of the overhead funds invested for our first six years ('91-'96)

Example of assumptions

- ATE enhancements funded as a level-of-effort and not on a per-product-delivered basis
 - We knew the actual schedule for each product
 - Typical was to assign 2 to 4 products per engineer
 - Assuming 4 products per engineer than on the average one fourth of each product's schedule was charged in labor hours
 - Sanity check => Avg calculated cost per product *
 Total number of tasks = 60% of the yearly labor
 > allowed for tasks that may not have been recorded

Cost Avoidance

- Our ROI guidance was to calculate the ROI (Cost Avoidance) on a 10 year moving window
- ROI ranged from 4:1 to 19:1 in our various projects
 - Our Level-of-effort (LOE) projects gave us the highest ROIs

Ogden Air Logistics Center

- The importance of beginning your measurement program early and growing it with the process(es).
- The benefits we have seen

 How our measurement program exists today

Cost Benefits

Ogden Air Logistics Center

- Quantifiable knowledge of our Process
 - Knowledge of cost and schedule to the process block level
 - > Ability to use SPC concepts at the micro level -Some SPC techniques explored were ineffective at the macro level
- Ability to identify where our bottlenecks are in the process

 Ability to identify the best ROI activities when addressing process improvements (focusing our efforts)

Cost Benefits Continued

Ogden Air Logistics Center

Managing a Spending Plan

- We now have an ability to manage more than a spending plan (a.k.a. burn rate)
 - Being 50% through the schedule (in calendar days) and having spent 50% of the funds does not mean that the project is 50% complete
 - > In the '80s our managers relied on this and the engineer's estimated % complete

Example of Reduced Cycle Times

- Our ATE Level-of-Effort maintenance projects reduced their cycle times by approximately 70%
- In 1996 we teamed with other USAF agencies to further reduce the overall response time.
 From over 3 years to a goal of a 100 day

Example of Improved Productivity

Ogden Air Logistics Center

Cost Per SLOC decreased by 34%

- The drop from projects "G" to "H" has been attributed to
 - The ability to reuse software from another project
 - Moving to a newer generation of programming language
 - Other Process
 Improvements

Quality Benefits

Ogden Air Logistics Center

Quantifiable knowledge of our defects

- Where they are occurring
- How often they occur
- The severity of the defects
- The impact to cost and schedule to remove the defect

• Ability to take appropriate action to prevent the defects

Example of Reduced Defects

Ogden Air Logistics Center

- Defect Tracking includes
 - Those found Internal and External
 - Minor, Moderate, Major
 & "Show Stoppers"
 > Major = does not meet requirements

Testing Costs decreased by 39%

Defects per KSLOC decreased by 42%

Intangible Benefits

- Better communication with the customer

 Our F-16 ATE customer has on-line access to the status of all projects.
- Customer's confidence in our ability

 Program Management Reviews more accurately reflect the status of the project.
 We are better at meeting cost, schedule, and
 - quality requirements.

Intangible Benefits

- Improved management involvement and insight into the organization
- Management decisions do not rely on assumptions and opinions
- Ability to answer the General's questions

 How are you doing?
 How do you know?

 Are you getting better?

 How do you know?

- The importance of beginning your measurement program early and growing it with the process(es).
- The benefits we have seen
- How our measurement program exists today

Separation of Process & Project Metrics

- Project Metrics
 - Focus for managing our active projects
 - > Where am I at according to my latest plan?
 - > How do I get to where I need to go?
 - > Calculated on open projects

- Process Metrics
 - Focus of QPM/SQM meetings
 - > How did I do compared to my estimate?
 - > How can I improve?
 - > Calculated on closed projects (may include closed process blocks)

Cost & Schedule Metrics

- Modified Earned Value concept of Variances
 - Earned value did not support process metrics
 - Earned value was too sensitive at the start
 - Earned value reporting of schedule variance in terms of dollars was not intuitive
 - Tracked at the project and process block level
- Difficulty is in finding meaningful ways to roll up the information

Applying CMM to LOE and Non-Engineering Projects

- Use 4-month and 12-month moving windows of
 - Average Cost per product / task in lieu of CV%
 Average Cycle Time per product / task in lieu of SV%
- Workload Activity (Monthly snapshot)
 - Qty. Received
 - Qty. Closed
 - Qty. Open (ability to identify Qty. per person)
 - Qty in Work Stoppage
 - Displayed for a 12-month period

Defect Metrics

Ogden Air Logistics Center

- Defect Detection Ratio = Percentage of defects found up to each check point divided by all defects found
- Defect Density = What the customer sees = No. of released defects / Actual Hours
- Defect Injection Rate = No.of defects / Actual Hours

Applied at both the project and process block levels

Questions?

