
1 of 11

Draft Definitions and Instructions for Draft DD Form 2630-R version (date) 06/07/00
For use with 060700page1.xls and 060700page2.xls

INTRODUCTION

The Software Product Development Report (DD Form 2630-Revised) is used to
describe a single software development or upgrade effort. This can be a single software
contract, the software component of a larger contract, or an internal (“organic”) DoD
effort. Only new software developments or efforts to upgrade existing software systems
should use the DD2630-R, not purely software maintenance or operation efforts. For
convenience here, the term contract is used to mean the authorizing vehicle or agreement
that describes the software development project whether or not this is in the form of a
formal contract.

This document explains the content of the DD2630-R by describing each data
item. This document does not explain the exact process by which each reporting project
must complete and submit the form. In general, the form was designed to be able to
record initial expectations about a project as well as actual results at the end of a project.
For this reason, every reporting project should submit an initial instance of the form
before development begins (e.g., at the initial CARD), a second instance within 60 days
after contract award, and a final instance at contract completion describing the as-
delivered software product. Details about the submission process are outside the scope of
this document.

It is assumed that forms will be submitted as computer files. This allows tailoring
of the names and numbers of data items. It is also assumed that the data definitions
included in these instructions will be tailored as needed and submitted with the data form
files as a Software Metrics Data Dictionary. The sign-off area on page two includes space
to identify the file name and revision for the associated Software Metrics Data
Dictionary.

The form is divided into two pages. Page one has three parts (numbered 1 through
3). Page two has three additional parts (numbered 4 through 6) plus a sign-off area at the
end. The questions for each part are described below.

INSTRUCTIONS FOR PAGE ONE

Page one is entitled Report Context, Project Description, and Size and has three
parts that correspond to these elements.

Part 1. Report Context

The first half of Part 1 (items 1 through 4) should be completed for all three
submissions of the DD2630-R but the second half (items 5 through 10) should only be
completed for the two submissions after the development organization has been identified
(contract award and final).

1. System/Element Name (version/release)

2 of 11

Enter the name used to refer to the software product being developed, including
any applicable version, release, build, or other identifier. The reporting process (the
specification of which is external to this document) may require a separate series of
reports for each delivered release of the software.

2. Report As Of
This is the date as of which all other answers are meaningful for this submission

of the form. If a subsequent report supersedes a previous report, for example to correct an
error, this date would be the retroactive date of the superseded report rather than the
current date.

3. Authorizing Vehicle (MOU, contract/amendment, etc.)
Cite the contract number (if applicable) and amendment number (if applicable), or

memorandum of understanding, or other documentation that authorizes the development
of the subject software.

4. Reporting Event
Indicate the event that drives this submission of the DD2630-R. Possible choices

are, “CARD,” “Contract Award,” or “Final.”

5. Development Organization
For report submissions after contract award, enter the name of the company or

organization that is the responsible developer of the software product being developed.
(For the initial submission before development begins, leave these last six items of this
section blank.) Data may be aggregated across all software development subcontractors
and support contractors on a single form or one form may be submitted for the work of
each development organization (or some organizations may be aggregated and others
may appear on separate forms). As with any other tailoring of this form, agreement on the
level of aggregation must be reached between the developer and program office. Use the
associated Software Metrics Data Dictionary section to explain any use of multiple forms
to represent a single submission.

6. Certified CMM Level (or equivalent)
Enter the Software Engineering Institute (SEI) Capability Maturity Model (CMM)

number of the level (1 through 5) at which the primary development organization has
been formally certified. If no formal certification has been conducted, enter 0 (zero). If
multiple forms are used to represent a single submission, enter the appropriate level for
the relevant organization on each form (or zero). If a single submission is used to
represent the work of multiple organizations, enter the level of the organization that will
be expending the most amount of effort on the development project (not necessarily the
prime contractor) and note this in the Software Metrics Data Dictionary. If the
government has accepted an alternate assessment mechanism, enter the results here and
explain the meaning of the assessment in the Software Metrics Data Dictionary.

7. Certification Date

3 of 11

If the answer to item 7 is non-zero, enter the date when the formal assessment
associated with the indicated level was conducted.

8. Lead Evaluator
If the answer to item 7 is non-zero, enter the name of the person that lead the

formal SEI CMM assessment and determined the maturity level indicated.

9. Affiliation
Enter the affiliation of the Lead Certifying Analyst in the previous item.

10. Precedents
List up to five analogous systems that have been developed by the same software

organization or development team.

Part 2. Product Description

1. Primary Application Type
Please describe the primary application type being developed using one or more

abbreviations from this list, if possible. The primary application type describes the
domain of the largest part of the software product. The primary type may be the only
application type listed, but any number of application types may be listed. (Space for four
is provided on the form but computer file submissions of data may include any number.)
If none of the examples in the following list are appropriate, please enter a phrase in the
style of those in this list to describe the application type.

Embedded applications:
AV Avionics
AUD Audio signal processing and enhancement
CC Command and Control
CCI Command, Control and Information
C3I Command, Control, Communications and Information
C4I Command, Control, Communications, Computers and Information
DSP Digital Signal Processing
GDE Guidance and control
IMG Image processing and enhancement
OFP Operational Flight Program
SIM Simulation
TEL Telemetry
TRG Target seeking
TRE Embedded trainer software
WE Embedded Weapon
Networked applications and other computer systems:
DS Decision Support
IS Information System
MIS Management Information System
OS Operating System
TRO Online training or education software

4 of 11

2. Percent of Product
Enter the approximate percentage of the product size that is of the indicated

primary application type, up to 100%.

3. Development Process
Identify the name of the development process being followed for the primary

application of the system. Use common industry terms to describe it, such as waterfall,
spiral, or RAD, rather than a proprietary name that is internal to the development
organization. Do not indicate a software architecture method (such as object-oriented
development) or a development tool (such as PowerBuilder).

4. Upgrade or New
Indicate whether the primary development is new software or an upgrade. A

software system is considered new either if no existing system currently performs its
function or if the development completely replaces an existing system. A software system
that replaces part of an existing system (such as the replacement of a database) should be
considered an upgrade. An existing software system that is being ported to a new
platform or being reengineered to execute as a web or distributed application (for
example) would be considered an upgrade unless it is also being completely redeveloped
from scratch (new requirements, architecture, design, process, code, etc.).

5. Secondary Application Type
If there is a major secondary application type, indicate it here using the same list

as shown for question 1, above.

6 - 8. Secondary Application Type Details
Describe and indicate the percentage, development method, and novelty for the

secondary application type being developed, if applicable.

9 - 12. Third Application Type and Details
If the project includes a third application type, describe it and indicate the

percentage, development method, and novelty for the third application type being
developed.

13-16. Fourth Application Type Details
If the project includes a fourth application type, describe it and indicate the

percentage, development method, and novelty for the fourth application type being
developed.

If a project includes more than four application types, add new lines when the
submission is in the form of a computer file. If the submission is by hard copy, submit
additional sheets to describe the additional application types in terms of the same data
items (type, percentage, development method, and novelty).

17. Primary Language

5 of 11

Enter the computer language in which most of the development will be
conducted. This can be a compiled language, such as FORTRAN, Ada, or C, or it can be
an interpreted language, such as Forte. Use the amount of effort spent in development to
determine the primary language rather than the amount of function delivered. For
example, if a system is being developed with a COTS product that supplies most of the
end function and shifts the bulk of the work to creating C language interfaces to data
stores, then C would be the primary language and not the COTS tool scripting language.
Explain any interpretation of this item in the associated Software Metrics Data
Dictionary.

18. Percent of Product Size
Enter the approximate amount of the final development effort that will be

involved with producing code in the Primary Language. This may differ somewhat from
the percent of the final physical product that will be written in this language since a large
portion of the delivered product might use generated code or COTS products that are not
directly developed.

19. Secondary Language
Enter the secondary language used in the development (if any), using the same

definitions given under the Primary Language.

20. Percent of Product Size
Enter the approximate amount of the final development effort that will be

involved with producing code in the Secondary Language. This may differ somewhat
from the percent of the final physical product that will be written in this language since a
large portion of the delivered product might use generated code or COTS products that
are not directly developed.

21. List COTS/GOTS Applications
List the names of the applications or products that will participate in the final

delivered product, whether they are commercial off-the-shelf (COTS) or Government off-
the-shelf (GOTS) products. If a proprietary application or product will be included which
is not generally available commercially, list it here and include an explanatory remark in
the associated Software Metrics Data Dictionary.

Part 3. Product Size Reporting

Part 3 asks for quantitative information about the size of the software
development. If this is not the final submission of the DD2630-R then estimates-at-
complete should be shown in the right-hand column. If this is the final submission after
software delivery then provide actual values for the entire development project.

1. Number of Requirements, not including External Interface Requirements
Indicate the number of requirements satisfied by the developed software product.

In the initial reports, provide estimates of the total number of requirements to be
implemented by the software being developed. In the final submission of the DD2630-R,

6 of 11

provide the actual number of requirements implemented by the developed software using,
if possible, the same counting method as was used in the previous reports. Do not count
requirements concerning external interfaces not under project control. Explain any details
about requirements counting methods used in each submission in the Software Metrics
Data Dictionary.

2. Number of External Interface Requirements
Indicate the number of external interface requirements not under project control

that the developed system must satisfy. External interfaces include interfaces to computer
systems, databases, files, or hardware devices with which the developed system must
interact but which are defined externally to the subject system. In the initial reports,
provide estimates of the total number of interface requirements to be handled by the
software to be developed. If the developed system interfaces with an external system in
multiple ways (such as for reading data and also for writing data) then each unique
requirement for interaction should be counted as an interface requirement. In the final
submission of the DD2630-R, provide the actual number of interface requirements
handled by the developed software using, if possible, the same counting method as was
used in the initial reports. Explain any details about requirements counting methods used
in each submission in the Software Metrics Data Dictionary.

3. Code Size Measures
Use item 3 to indicate the code size measure used in items 4 through 11. A

measure other than those listed may be indicated if none of those shown are applicable.
The preferred size measures are total physical source lines of code or carriage returns (to
be indicated below by “S”), noncommented and nonblank source lines of code (to be
indicated by “Snc”), or number of logical source statements (to be indicated by “LS”). If
another size measure is being used, provide an abbreviation for it and briefly explain it.
For example, unadjusted function points, adjusted function points, object points, feature
points, classes, algorithms, or other functional measures could be indicated. Use the
Software Metrics Data Dictionary if more than a few-word explanation is necessary.

The size measure chosen should allow independent verification of the project size
by examining the software products produced by the development. For this reason, one of
the source code counting methods is preferred as a size measure, where “code” can refer
to any hand-edited product such as lines of a computer language or lines in tables used to
configure a reusable product. Many models normalize to SLOC, which is a convenient
common denominator for describing product size, even if the initial planning is done
using another measure, such as function points, objects, classes, screens, algorithms, etc.
However, developed code size may be expressed in other terms if SLOC is a meaningless
measure of the output for the majority of the programmer effort (such as when
developing a web page using an iconographic publishing tool interface).

The size measure used should be in accordance with the approved Software
Metrics Plan, which is developed by the Cost WIPT.

The next eight items are intended to capture the size of the system under
development by partitioning (exhaustive with no overlaps) the code into eight categories.
(Any tailoring of this form should maintain a partitioning categorization.) The
configuration control system is assumed to be the repository for completed code. Only

7 of 11

the most recent version of each code unit should be counted. For each of the next eight
lines, indicate the size measure used by inserting an abbreviation from item 3, including
any user-provided abbreviations, in the blank provided.

4. New Code for COTS/GOTS Integration and under Configuration Control
Most software projects utilize a combination of new, reused, and generated code

to accomplish the required function. Any code that was developed specifically for this
project, or was reused or generated by tools but then extensively modified (more than
25% of the lines), should be considered new code.

New code can be integration and instantiation code (sometimes called the “glue”
code) required for one or more COTS or GOTS products to perform the required
function. This type of new code should be reported under item 4. Enter the balance of all
other new code under item 5.

5. All Other New Code under Configuration Control
Enter the total size of all newly developed code (including code that was

generated or reused but was modified more than 25%) except integration or instantiation
code reported under item 4. Code generator inputs prepared by hand, such as tables or
scripts, should be counted as new code. The generated code should be counted under
items 6 or 7, as appropriate.

6. Modified Generated Code under Configuration Control
Source code that was generated by tools, and was then reused with minor

modifications (less than 25% modified) by this project is to be reported under item 6.

7. Unmodified Generated Code under Configuration Control
Source code that was generated by tools, and not subsequently modified, is to be

reported under item 7.

8. Modified Internally Reused Code under Configuration Control
Source code that is obtained from within the organization, and subsequently

modified (even slightly), should be reported under item 8. Any units of code that are
more than 25% modified should not be reported here but should be reported as new code.

9. Unmodified Internally Reused Code under Configuration Control
Source code that is obtained from within the organization, and not subsequently

modified (even slightly), should be reported under item 9.

10. Modified External Reused Code under Configuration Control
Source code that is obtained from outside the organization (i.e., the development

team has no access to the developers of the reused code) and is subsequently modified
should be reported under item 10. Any units of code that are more than 25% modified
should not be reported here but should be reported as new code under items 4 or 5.

11. Unmodified External Reused Code under Configuration Control

8 of 11

Source code that is obtained from outside the organization, and not subsequently
modified (even slightly), should be reported under item 11. Any units of code that are
more than 25% modified should not be reported here but should be reported as new code
under items 4 or 5.

INSTRUCTIONS FOR PAGE TWO

The page two of the DD Form 2630-R is entitled Project Resources, Schedule,
Staffing, and Quality, and is a continuation of the three parts of the form included on
page one. It has three parts as described below.

Part 4. Detailed Schedule Reporting

Project development is typically broken down into phases or activities. This form
can be tailored to include the names of the phases or activities that are appropriate for the
subject development. Items 1 through 6 under Part 4 are taken from the activity
definitions used in ISO12207 and are intended to be generic to any software development
(though they may not be strictly associated with development phases by the same names).
These activities may be performed simultaneously, sequentially, or both.

1 - 6. Software Development Activities
The first six rows show the names of the default activities into which software

development activity can be partitioned. For planning purposes, most software schedules
assume the listed activities will peak during certain intervals and will drop to a minimum
during other intervals. To the extent that the activities listed are associated with periods
of peak activity, provide estimates of (or actual values for, in the case of the final delivery
report) the duration of that interval in the Start Month and End Month cells (beginning
with month 1 at contract award). If activities continue at a constant levels of effort and
overlap each other, the end date of one activity could occur much later than the start date
of a subsequent activity in this list. In general, however, the listed activities are likely to
peak during different intervals of time, and it is those peak intervals that are to be defined
by the indicated start and end month values. The two initial report submissions should
show estimates and the final submission should show actual start and end month values.

Report in the third cell of each row the total number of direct labor hours
expected to be expended (or actually expended in the case of the final delivery report) in
this activity. Hours expended on an activity should not be limited to the indicated month
numbers that define the peak period of the activity but should include all hours spent on
each activity.

7. Other Direct Software Engineering Development Effort
Item 7 is intended to cover all other directly charged activities not specified in the

first six items, above. In the text space provided, summarize the kinds of activities
included, such as project management, IV&V, configuration management, quality
control, problem resolution, library management, process improvement, measurement,
training, documentation, data conversion, or supporting a customer-run acceptance test.
Also include software delivery, installation, deployment and/or implementation, to the

9 of 11

extent these activities are included in the development contract. If allocated direct
charges are incurred on a project, they should be included in this item. Only the total
estimated or actual direct hours are to be reported for Item 7. Do not include indirect
effort, such as contracts, finance, or accounting effort that is not directly charged or
allocated to the subject software project. Use the Software Metrics Data Dictionary to
explain (non-quantitatively) if indirect software-related effort contributes to the project
(e.g., training, process improvement, methodology research).

Part 5. Staffing Profile

1. Peak number of software development personnel
Provide the estimated or actual peak FTE (full-time equivalent) count of persons

providing direct labor to any software development aspect of the project during any one
month. This count should cover efforts directly contributing to any of the tasks included
in Part 4, items 1 through 6 and should be based on 40-hour work weeks and 52-week
(2080-hour) work years. (Overhead charges account for holiday, vacation, and other
leave external to the computation of FTE.) If a different method is used to compute FTE,
indicate this in the Software Metrics Data Dictionary.

2. Month number of midpoint of peak
For the initial reports at the time of the CARD and contract award, enter the

month number, starting with month 1 at the beginning of the project, of the expected
midpoint of the peak staffing indicated in the previous item. For the final report, enter the
actual month number of the midpoint of the peak staffing period.

3. Personnel experience
Partition the total number of software development personnel who will contribute

to the project into three experience levels: highly experienced in project domain (three or
more years of experience), nominally experienced in project domain (one to three years
of experience), and entry level (zero to one year of experience). Normalize by staff-years
(such that, for example, a single highly experienced person who works on the project for
two years constitutes the same percentage of the total as two entry level people who each
contribute a year of effort). Enter the percentage for each category in the appropriate
spaces. Classify by the experience level of a person as he or she joins the project so that
experience on this project is not counted towards the ratings.

Part 6. Product Quality Reporting

1. Required Mean Time to Defect (MTTD) at delivery
Part 6 begins by asking for the required quality of the delivered product in terms

of its mean time to defect (MTTD). A value is only to be provided at the time of the
CARD submission of the DD Form 2630-R, and only if this is a meaningful method of
communicating the quality of the expected system. If applicable, the answer should be
given in hours, counting only the time the software is expected to be operational. In other

10 of 11

words, if the software is expected to be operational for twelve hours a day, five days a
week, then the expectation that the software will run without encountering a defect for a
week would translate to a 60-hour MTTD (twelve times five). On the other hand, if the
software is expected to be operational for 24 hours a day, seven days a week, a week of
defect-free operation would translate into a 168-hour MTTD. (Do not multiply by the
number of possible simultaneous executions of the software. For example, in the
previous case, if five processors were executing the software continuously for a week, the
answer would remain 168 hours.) The indicated MTTD value describes the expected
behavior of the software product immediately after delivery, and should be assumed to be
the average value over the first month, unless a longer period is indicated in the Software
Metrics Data Dictionary. The estimate should allow for encountering any defect, at any
severity level, not already known to be present (i.e., ignore defects that have been
accepted as part of the delivered software but do count as a defect a problem that was
known but was thought to have been fixed).

If a quantitative MTTD is not appropriate for the system under development,
provide an alternate method of comparing the required reliability of this system with the
nominal reliability for systems of this type. For example, if the system is an operational
flight program (see Part 2, item 1), higher than nominal reliability might be expected if
the OFP is for a stealth aircraft that cannot use radar or other means to serve as a backup
to the pilot. On the other hand, if the OFP were to control a pilotless vehicle, such as a
surveillance or drone aircraft, the required reliability might be lower than nominal among
other OFP systems. A tailoring of this item could allow the response to be in terms
relative to other similar systems, for example a scale such as “much higher,” “somewhat
higher,” “nominal,” “lower,” or “much lower” might be appropriate. As with any
tailoring, the explanation of the data must be included in the Software Metrics Data
Dictionary.

2 - 7. Cumulative Critical, Serious and Total Defects Discovered and Resolved
Part 6 then asks for actual counts of defects discovered and resolved throughout

the software development up to the point of software delivery. These items are only to be
completed at the Final Delivery data submission. Critical defects are classified as priority
1 (the highest priority) and affect safety or prevent meeting a critical mission
requirement. Serious defects are classified as priority 2 and adversely affect mission
accomplishment and have no known workaround. The count of total defects includes
critical and serious defects plus all other defect categories, including minor and cosmetic
defects. (An example of five defect categories can be found in the superseded MIL-STD-
498. Developers should use existing definitions as long as the reported categories of high
priority defects substantially correspond to the definitions suggested here. Developers
should also use existing procedures for distinguishing defects from standard
development, such as problems found after an inspection, after a configuration control
baseline, or after advancement to the next state of a development process.)

Items 2 through 7 include two columns for reporting the cumulative critical defect
counts at the end of software qualification test and at the end of the complete operational
test and evaluation period (just prior to delivery). If other names are used to define two
points at the end of the project for which defect totals can be provided, the form should
be tailored to use those terms and the Software Metrics Data Dictionary should explain

11 of 11

their meaning. Item 2 asks for the counts of critical defects at each of these two points in
the project. Item 3 the number serious defects (see the foregoing discussion for
definitions of defect severities). Item 4 asks for the number of all defects in all categories,
including minor and cosmetic defects (but not including problem reports that are actually
suggestions for additional features or functionality).

Items 5 through 7 are analogous to lines 2 through 4 but are used to report the
number of resolved defects in each category. The three columns are for reporting the
actual numbers of resolved defects in each severity after SQT and after OT&E, as before.
(The number resolved in each case must be lower than or equal to the discovered number
reported under items 2 through 4. Also, a critical defect can be downgraded to serious or
lower if the requirement that exhibits it is downgraded from critical to nominal. In this
case, the critical defect would become resolved and a new defect would be entered in a
lesser category.) If a project chooses to report unresolved defects instead of resolved
defects (the complementary number) for items 5 through 7, explain this in the Software
Metrics Data Dictionary.

Filename and Revision Date of Applicable Software Metrics Data Dictionary
The definitions of any tailored item or any other clarifying definitions of metrics

reported on a submitted DD Form 2630-R should be contained within a Software Metrics
Data Definition document. Submitters are encouraged to submit both the DD Form 2630-
R and the Software Metrics Data Definition as electronic files. The name of the file
containing the data definitions should be indicated here.

2 - 4. Cumulative Critical, Serious and Total Defects Discovered
The form concludes with a sign-off line for the name, phone, and e-mail of the

contact person to handle any inquiries about the data submitted, plus the date of
completion (as distinct from the date in part 1).

