
© Lockheed Martin Corporation
2003

1

The Estimation of the Reliability of a Large
Tactical Information System

John Gaffney, Thomas Mulvehill,
and Paul Marmillion

Lockheed Martin Mission Systems
July 15, 2003

e-mail: j.gaffney@LMCO.COM
Tel.: 301-240-7038
FAX: 301-240-7009

© Lockheed Martin Corporation
2003

2

Objectives of Presentation

• Describe an approach to estimating the reliability of software-
intensive systems.
– Variations of the reliability estimation methodology described

here have been applied to various projects at Lockheed Martin
as well as a predecessor organization.

• Consider how to estimate:
– The defect discovery profile and latent defect content of a software system
– The MTBF (or MTBO), Mean Time Between Failures or Outages

• Present the application of the methodology to a large software
intensive tactical information system, the Tactical Input Segment
(TIS).

© Lockheed Martin Corporation
2003

3

Tactical Input Segment (TIS)
• TIS was developed by Lockheed Martin and has been installed aboard

the USS Nimitz aircraft carrier. TIS has also been delivered to the
Navy’s Washington Planning Center and the Naval Surface Air
Warfare Center.

• The TIS system gives the Navy the capability to digitally receive and
process reconnaissance imagery from multiple sensor platforms such
as the U-2, Global Hawk, and the F/A-18 Shared Reconnaissance Pod
(ShaRP). With the recent acceptance of the first system deployment,
the TIS was immediately fielded as the tactical component of the
Navy’s Joint Services Imagery Processing System (JSIPS-N), the
reconnaissance imagery program of record.

• Through a partnership with Utah State University’s Space Dynamics
Laboratory (SDL) and the Naval Research Laboratory, Lockheed
Martin accelerated the processing of imagery from the F/A-18 SHaRP
pod through the TIS system. SDL’s expertise with the Navy
Information System (NAVIS) was key to the ShaRP enhancement.

© Lockheed Martin Corporation
2003

4

What is Reliability?
• There are various definitions for reliability. One good one is:

– The probability that the system (or component thereof) will not fail for some
specified period of time, commencing at some point in time.

• Some others are:
– The probability of system success. (Shooman)
– The probability that the software [system] will work without failure for

some time. (Musa)
– The probability of an item performing as specified under stated conditions

for a specified period of time. The ability of an item to perform a required
function under stated conditions for a stated period of time. (Software
Productivity Consortium Glossary)

– The probability that there is no failure during the time interval τ. A failure
occurs when the system produces an incorrect result for [in response to] a
valid input. (Conte)

– The probability that software will not cause the failure of a system for a
specified time under specified conditions. (IEEE Std-982)

© Lockheed Martin Corporation
2003

5

Reliability and Problems or Failures
• Reliability has to do with the expected time between problems or failures of a

system of interest or of one of its elements, such as its software.
• Various terms are used for failure, problem, etc.

– There are no really universally agreed-upon definitions, and often one that is used
in one instance may not be desirable in another due to the “political” baggage that it
carries.

• The fundamental idea is that a problem, defect, failure, etc. are words to cover
the concept of deviations of a system or of a software or a hardware element of
a system from its requirements or the standards to be followed in its
construction.

• The focus here is to how to determine (estimate) the mean (average or
expected) time between countable or relevant failures, commencing at some
point in time after delivery of the system.
– The estimate is based on data obtained during the development and testing

of the system plus data about prior systems. Therefore, the better the data
and projection models, the better the estimate.

© Lockheed Martin Corporation
2003

6

Major Uses of Reliability Models
• Prediction: Use to ensure (at some level of confidence) that

a proposed system will be able to meet its requirements.
Will it be feasible in the reliability sense?

• Comparative Analyses: What are the reliabilities of other
(similar, if possible) systems at delivery or at some
particular time after?

• Development Control: We should set goals for the
reliabilities of the software, the hardware, and the
procedures (if applicable). What do we have to do to have
confidence that the system that we are developing will
meet it is reliability objectives? Development
methodology? Test methodology? Estimation
methodology?

© Lockheed Martin Corporation
2003

7

Overview of Time-Based Software Failure and Reliability
Models, 1 of 2

• Software failures are typically modeled as though the failure rate
(failures per unit time) is a function of calendar time (it is actually a
function of use). The reliability is the inverse of the failure rate (times
a constant).

– Over the life cycle, commencing at the beginning of integration, the
failure rate typically initially increases and then decreases.

• Often modeled as a Rayleigh curve (one of the family of Weibull curves)
• Cumulative Version of Weibull: N(t)=E*(1-(t/c)x);where: E=total number of

findable failures or defects; N(t)=number of failures from time 0 to t; x=shape
parameter (x=1 for exponential and 2 for Rayleigh);c=scale parameter.

– More convenient form:N(t)=E*(1-b*tx); where: b=1/cx=v/tp
x

– V=a number that depends on x ;tp is the location of the peak (for x>1.0)
of the curve (failures or defects found versus time).V=0.5 when x=2.0
(for a Rayleigh distribution).

• Post-integration and post-delivery, the rate is modeled as a monotonically
decreasing function of time

– Often modeled as a decaying exponential curve (also one of the family
of Weibull curves)

© Lockheed Martin Corporation
2003

8

Overview of Time-Based Software Failure and Reliability
Models, 2 of 2

• Although the Weibull models represent the post-delivery rate as a decreasing
function of time:

• It may be convenient for planning purposes to model the post-delivery failure
rate for software as a constant, at least after some point in time.

• It is likely that there will be a “defect surge,” a “bump” in defect discovery,
for a period immediately after delivery, because of additional error paths
opening up due to differences of the testing environment from the operational
environment. Model this as an addition or “delta” on top of the Weibull curve.

• When we have estimated the mean value function for failure occurrence, λ(t) ,
we can obtain the corresponding estimate for the mean time between failures,
MTBF, as (1/ λ(t)) .

– For example, if λ(t) = 5 failures per day, at some value of t, then the MTBF= 0.2
days between failures, or perhaps more conveniently expressed, 4.8 hours between
failures, at that time.

– At each point in time, t=t0 (think of an interval of time, practically speaking), the
expected number of defects to be found is λ(t0), and the actual number is
distributed according to a Poisson distribution, with mean λ(t0) and standard
deviation = sqrt(λ(t0)).

© Lockheed Martin Corporation
2003

9

Example "Ideal" Software Defect Discovery Rate Curve
(Expected or Mean Value Function of Stochastic Process)

Units of Time

Va
lu

e,
 N

um
be

r o
f D

ef
ec

ts

D
is

co
ve

re
d

Pe
r U

ni
t T

im
e

Post-Integration

Integration

 In Service

Post-Release
Surge

Constant
Failure
Rate

“Ideal” because there are no jiggles in the plot as there would be with “real” data

© Lockheed Martin Corporation
2003

10

Example "Ideal" Software Mean Time Between Defect
(Outage) Curve

Units of Time

M
ea

n
Ti

m
e

B
et

w
ee

n
D

ef
ec

ts

“Ideal” because there are no jiggles in the plot as there would be with “real” data

© Lockheed Martin Corporation
2003

11

 Example Defects Per Month Vs. Month, Data and Fit

Month Number

D
ef

ec
ts

 In
 M

on
th

Actuals

Fit

© Lockheed Martin Corporation
2003

12

Some Alternatives (Fits to Experience) For Post-Delivery
(Operational) Defect Discovery, Percent of Latent Defects

Discovered Per Year Vs. Year

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 2 3 4 5 6 7 8 9 10

Operational Year Number

Pe
rc

en
t o

f L
at

en
t

D
ef

ec
ts

 D
is

co
ve

re
d

In

Ye
ar

Alternative 2

Alternative 1

© Lockheed Martin Corporation
2003

13

Post-Delivery Relative MTBF (=1/(% Latents Discovered Per
Year)) Vs. Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10

Operational Year Number

R
el

at
iv

e
M

TB
F

Alternative 2

Alternative 1

© Lockheed Martin Corporation
2003

14

Defect Data Fitting and Projection Using the
STEER II Model

• STEER II is the latest version of a tool (currently excel-based) that was
originated in the former IBM Federal Systems Division, a predecessor
organization of Lockheed Martin Mission Systems, developed circa
1985.

• A subsequent version of the tool was developed at the Software
Productivity Consortium.

• STEER II develops fits and projections for phase-based and time-
based software defect discovery data.

© Lockheed Martin Corporation
2003

15

 STEER II Three To Nine-Phase Rayleigh Defect Discovery Profile Fit
Defect Discovery Profiles, Rayleigh Fit & Actuals For Example

 Phase Data Fit To Data Absolute Value, Cumulative Fit Cumulative
Number Name Defects/KSLOC Rel. Error of Fit Entered

1 1 6.89 6.89
2 2 17.14 24.02
3 3 19.600 19.66 0.0031 43.68
4 4 21.400 15.72 0.2654 59.40
5 5 5.750 9.58 0.6653 68.98
6 6 5.600 4.60 0.1786 73.58
7 7 1.77 75.35
8 8 0.55 75.91

Latent 0.18 76.08
0.2781Average Rel. Error of Fit=

Example of STEER II Phase-Based Data Fit/Projection

© Lockheed Martin Corporation
2003

16

Defect Discovery Profiles, Rayleigh Fit & Actuals For Example

0.000

5.000

10.000

15.000

20.000

25.000

1 2 3 4 5 6 7 8 Latent

Development/Test Phase

D
ef

ec
ts

 P
er

 K
SL

O
C

 In
 P

ha
se

Data

Fit

Example of STEER II Phase-Based Data Fit/Projection

© Lockheed Martin Corporation
2003

17

Software Reliability Methodology Summary
• Estimate Latent (Post-Delivery) Defect Content:

– Initially, use phase-based defect estimation; enables you to estimate latent
defect content before (time-based) defect discovery data is available.

• If estimated figure is not desirable, the early availability of the estimate may
make corrective action feasible.

– When time-based data becomes available, use it to refine the latent
estimate.

• Estimate Latent Defect Discovery vs. Time (Rate) Profile
– Determine form of discovery curve; the MTBO or MTBF curve has the

form of its inverse.
• Initially, estimate using normalized defect discovery profiles based on prior

project experience.
• Later, when time-based data is available, develop estimate for project.

• Estimate MTBO/MTBF Vs. Time Profile
– This is done for each of the several types of code that compose the

software system of interest, e.g., new/modified from supplier 1,…, reused
from supplier 1,…. and then combine the values to obtain values for the
software system overall.

© Lockheed Martin Corporation
2003

18

Estimate Latent Defect Content

Estimate/Fit Defect Discovery Profile

Estimate Time-Between-Defect Profile

Determine Outage Severity Impact
Policy

Refine/Update Estimates As Appropriate

Exit

Start

Reliability
Estimation
Methodology

Flow

© Lockheed Martin Corporation
2003

19

Summary of TIS Project Reliability Estimation
Process

• Used the STEER II tool several times to estimate the latent defect
content for the new code and modifications to existent code, as more
data about defect discovery became available during the development
and testing process.

• Initially, estimated the latent defect content for the new, modified, and
the reused code developed by the Utah State Space Dynamics
Laboratory based on a little data and estimates based on the Lockheed
TIS code and other Lockheed projects’ code.
– Updated the estimates as testing and use data became available.

• Combined the latent estimates and the defect (failure) profiles for each
type of code to create an overall TIS Time-Based Defect Discovery
(expected software-caused system failure) Profile using the TIS
Software Reliability Estimation Tool.

© Lockheed Martin Corporation
2003

20

Factors That Contribute To Poor Estimates

• Lack of accurate and reliable data; data is often quite noisy
• Lack of historical data with which to compare estimates
• Focus on getting “the right answer” (“what the boss wants”) instead of

the best answer.
• Too much reliance on unthinking use of models and/or estimator

naiveté; lack of estimating experience
• Lack of a systematic estimation process, sound techniques, or models

suited to the project's needs
• Unrealistic expectations and assumptions

– “We will do much better on this project than on the last one.”
– Failure to recognize and address the uncertainty inherent in

software estimates.
• “The model says xxxxx, therefore, that must be the case !”

© Lockheed Martin Corporation
2003

21

Final View

• Care should be given to the definitions used for defect, problem, etc.
when fitting data to models.

• Estimates are only as good as the data and the models used to compose
them.

• The Weibull family of models has been found quite useful in
estimating reliability and availability.

• Don’t wait until testing data is available (from “dynamic’ verification
stages) to make defect discovery and reliability estimates for your
project.
– Initially, make a phase-based estimate using data from inspections

and other “static” verification stages.
– When sufficient time-based data is available, update the estimate.

