
4 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

requirements
E d i t o r : S u z a n n e R o b e r t s o n � T h e A t l a n t i c S y s t e m s G u i l d � s u z a n n e @ s y s t e m s g u i l d . c o m

E
very programmer with an ounce of
brains and more than two ounces of ex-
perience knows a bitter truth: The road
to software development hell is paved
with “good” requirements.

Requirements are the “big lie” that organi-
zations systematically tell themselves to prove
that they really do analyze, prioritize, and op-
timize their software and network needs ac-
cording to rigorously defined criteria—honest!

Requirements for
miscommunication?

But every developer I know—no excep-
tions—ruefully tells the same pathetic software
story. They talk of how they genuinely listen to
their client’s needs, how much they care, and
how they’re professionals. So, they gather up
requirements and specs, circulating and refin-
ing them, until there’s a genuine consensus and
mutual understanding. The development team
then goes off for 30, 60, or 90 days and builds
a pretty decent prototype.

With pride and a flourish, the team then
demonstrates this prototype to the client. You
know what happens next. “Well,” says the
client with a disconcerting air of disappoint-
ment, “that’s pretty much what we asked for,
but now that we’ve seen it, we realize it’s not
what we really want. What we really need is ….

Can we have another prototype by Thursday?”
Welcome to the worst of both worlds. The

client now thinks the developers are a bunch
of propeller-headed prima donnas who don’t
grok the imperatives of the business. The de-
velopers think the client is a fickle moron who
doesn’t know what he wants but doesn’t hesi-
tate to waste everyone’s time trying to find
out. Perhaps they’re both right. Nevertheless,
the punch line to this unhappy joke—now
that credibility has been destroyed and mutual
contempt established—is that the two groups
have to work together to get the job done.
Good luck.

The supply-demand mismatch
The banal pervasiveness of this program-

ming cliché fascinates me. How can so many
smart people make the same self-destructive
mistake time and time again? Why do seem-
ingly rational managers let this kind of dys-
functional development persist? What does
this perennial pathology say about how orga-
nizations really pursue what they say they
want to accomplish?

To my surprise, the answers to these ques-
tions are shockingly simple. Even more shock-
ing, however, is that these simple answers
make perfect sense. The trick is to think back
to Economics 101.

Clients are responding all too logically to

Never Go to a Client
Meeting without a Prototype
Michael Schrage

We hear a lot about how collaboration is the key to implementing the right
requirements. But how can clients and developers achieve this collaboration?
Michael Schrage gives us the benefit of his experience on how prototypes and
professionalism make this happen. Let us know about your experiences with
collaborative prototypes. —Suzanne Robertson

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 4 3

REQUIREMENTS

the peculiarly perverse economics of re-
quirements-driven software develop-
ment. Requirements create markets
where clients have unambiguous incen-
tives to avoid rigorous thinking, shun
effective risk management, and dele-
gate the more difficult design trade-offs
to IT. Perverse incentives yield perverse
outcomes.

So what are these perverse incentives?
What’s wrong with the requirements mar-
ketplace in software development? Eco-
nomics 101: A fundamental mismatch ex-
ists between supply and demand. Costs
are misunderstood, benefits are mis-
aligned, risks are mispriced, and rewards
are mismanaged. The result? Software de-
velopment succeeds in spite of “good” re-
quirements, not because of them.

Costs without benefits
Think coldly and dispassionately

about costs. How much does it really
cost a client to come up with yet an-
other “good” requirement? The an-
swer, of course, is almost nothing. It’s
relatively fast, cheap, and easy for even
quasi-intelligent clients to develop long
lists of eminently reasonable features,
functionalities, and requirements to
build into the software.

So why should anyone be surprised
by the surfeit of requirements, “en-
hancements,” and “improvements”
that inevitably materialize as develop-
ment begins? It means we always have
an oversupply.

But the problem gets even worse.
Remember, clients are rewarded for
generating “good” requirements, not
for generating good software. Software
is IT’s job. Clients are rewarded for
coming up with something that’s cheap
for them to produce, and for the client,
requirements are an end in and of them-
selves: the requirement is the deliver-
able. For IT, requirements are a means
to an end. This is a market mismatch.

In other words, the client’s job is to
give IT good requirements in exchange
for good software. Indeed, many
clients believe that their requirements
don’t impose a cost on IT as much as
they confer a benefit—that is, a valu-
able insight into business process and

priorities. Along with the development
budget and schedule, clients think of
requirements as a form of currency
they give developers to help them bet-
ter prioritize their own efforts. Clients
collaborate with IT by sharing “good”
requirements with them.

The economic asymmetry is obvi-
ous: it’s orders of magnitude faster,
cheaper, and easier to come up with
“good” requirements than to generate
good software. Yet top management in
most organizations typically behave as
if the requirements are just as valuable
as the software.

Superficially, of course, this behav-
ior makes sense. After all, wouldn’t we
waste a lot of time, money, and energy
on software development if we didn’t
have such requirements? The economic
reality underlying this argument, how-
ever, utterly annihilates its credibility.

Significant change
is inevitable

As we know, requirements change.
Always. Requirements change because
perceived needs change, the business
environment changes, budgets and
schedules change, and top-management
expectations change. Just as impor-
tantly, requirements change because in-
dividuals and institutions learn about
processes and applications as they try
to translate them into software. By def-
inition, we can’t know these changes in

advance—if we did, they’d be part of
the original requirements.

Clients—let alone software develop-
ers—seldom know in advance which
requirements will be most important or
require the most modification or prove
the most difficult to test or the riskiest
to implement. The result is a “perfect
storm” for development turbulence.
Clients who are recognized and re-
warded for generating a glut of re-
quirements that might or might not
change substantially as development
proceeds collide with IT developers
who don’t know—who can’t know—
which requirements should be refined,
revised, or removed.

Indeed, most IT shops aren’t re-
warded for refining, revising, and re-
moving requirements—they’re compen-
sated for building to requirements. In
other words, the IT default is to try to
give clients what they say they want,
whether the requirements make sense
or not. (Which, of course, is why IT al-
ways has such powerful incentive to get
clients to “freeze” requirements as early
as possible or try to make it difficult or
expensive to change requirements later
in the development process.)

The analogy here is a client having a
massive banquet on a tight schedule
and an even tighter budget, with IT as
the world-class caterer. The client,
however, is responsible—and rewarded
for—the menu not the meal. Negotia-
tions go back and forth about the mix
of chicken, beef, fish, and vegetarian
meals. How many courses? Light or
heavy dessert? Which appetizers? Who
coordinates the wines? What is the
likeliest number of guests? And so on.

The caterer, of course, can “out-
source” appetizers and desserts. Simi-
larly, the caterer can argue with the
client about appropriate portion sizes
to stretch the budget or push for
cheaper but more filling appetizers to
reduce the entrée cost. The caterer can
surreptitiously substitute tap water for
bottled water. The creative caterer has
innumerable options for producing
both a good meal and a healthy profit.

The problems, of course, come
when the client calls the caterer after

For the client,
requirements are
an end in and of

themselves. For IT,
requirements are
a means to an end.

This is a market
mismatch.

4 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

REQUIREMENTS

the budget, schedule, and menu have
ostensibly been decided. What does the
caterer do when the client says 25 per-
cent more people are coming and
there’s a 40 percent chance that half
will be vegetarians? Or when the ban-
quet must be rescheduled for a week
earlier? Or when the client says the
CEO now forbids alcoholic beverages,
has cut the budget 40 percent, and de-
clares that all the attendees are on the
Atkins diet? Or when the client insists
that his or her own proprietary recipes
and wholesalers be used?

This example isn’t meant to show
that we must plan for contingencies but
that experience teaches that we take re-
quirements far too seriously. In portfolio
management terms, most software de-
velopment organizations are heavily
overinvested in requirements at the ex-
pense of other development areas. This
overinvestment represents a considerable
waste of time, money, and opportunity.

Schrage’s Iron Law of Requirements
modestly codifies this overinvestment’s
magnitude: “The first client demo ren-
ders 40 percent of the listed require-
ments either irrelevant or obsolete—
the problem is, we don’t know which
40 percent.” We accelerate past the
point of diminishing returns on re-
quirements far faster than we care to
acknowledge.

Some critics assert that this “anti-
requirements” stance is simply much
ado about the so-called waterfall soft-
ware development method. Not so.
The perverse economics of require-
ments transcends waterfalls.

The requirements surplus
In fact, if we look at the rise of so-

called agile programming methodolo-
gies and the Extreme Programming
movement, what do we invariably
find? We discover a de-emphasis on re-
quirements and a focus on use cases
that look at how people actually be-
have instead of what they say they
want. In essence, at the XP develop-
ment philosophy’s core is a belief that
actions speak louder than words.
There’s no requirements surplus here.

The rise of Enterprise Resource Plan-

ning represents an even more provoca-
tive approach to the requirements co-
nundrum. What an SAP or Oracle effec-
tively declares is, “To heck with your
requirements; you should make your
business processes conform to our re-
quirements.” In other words, they’ve
created a de facto software monopoly
that marginalizes the firm’s internal re-
quirements marketplace. Of course,
when you try to customize this soft-
ware, all those requirements pathologies
resurface because the firm’s require-
ments are subordinated to the software.

I’ve made a better than comfortable
living advising software development
groups to stop gathering requirements
after the first 20 to 25 and then do a
quick and dirty prototype to lure the
client into codevelopment. Why? For
two excellent market-tested reasons:
First, you tend to get better quality re-
quirements when they’re generated by
ongoing client interaction with a con-
stantly improving prototype. Proto-
type-driven requirements ultimately
lead to better apps than spec-driven
prototypes.

The second reason relies more on
Psychology 101 than Economics 101:
clients are happy to cavalierly reject
your work. They tend to think twice,
however, before throwing out their
own. In other words, when clients are
vested in software development with
more than just money, you get both a

better development process and a better
software product. The economics of
software prototype-driven require-
ments are inherently less dysfunctional
than the economics of requirements-
driven software development.

So what are the Productive Pro-
grammer’s Prototyping Principles that
should emerge from this shift from
economics-oriented to cost-effective
requirements? Here are three princi-
ples that I commend to my own
clients. We discovered them the hard
way, wasting considerable time, effort,
and thought trying to get “better” re-
quirements. Don’t repeat my mistakes.

Design software as if actions speak
louder than words

Listening to clients is more polite
than productive. The purpose of every
design conversation with a client should
be to create a behavioral representation
of the desired requirement. Whether a
paper prototype, a storyboard, or a sim-
ulated screen sequence detailing a use
case, the goal should always be to get
the client to realize, react, and respond
to an implemented requirement’s possi-
ble implications. Programmers should
design according to what people do as
opposed to what they say.

Certainly, clients are always best ob-
served in their “natural habitats” be-
fore any serious conversations about
requirements begin. Indeed, at least
two members of a programming team
should spend on-the-job time at a
client site before a serious, all-hands
kick-off design meeting. Yes, this is ob-
vious, yet fewer than half of the orga-
nizations I know do this with any de-
gree of rigor or consistency.

Never go into a client meeting without
a prototype

This is the opposite side of the
Principle 1 coin. A model, prototype,
or simulation—not a “risk-adjusted”
set of requirements—should be the
design-interaction medium between
the development team and the client.
Indeed, the development team, not
the client, should be driving the con-
versation because clients need the

You tend to get better
quality requirements

when they’re generated
by ongoing client
interaction with

a constantly
improving prototype.

context of usable models and partici-
patory prototypes to better articulate
what they really wish to accomplish
through the software. The word for
programmers who would rather dis-
cuss client needs than observe their
behavior is “unprofessional.”

Clients are prototyping partners,
not customers

We model, prototype, and simulate
software with clients, not for them.
The development team should educate
clients who are unready or unable to be
effective partners. Clients unwilling to
be partners should be fired.

Professionalism isn’t just about
competence; it’s about integrity. To be
blunt, developers who won’t collabo-
rate on prototypes with clients are as
unprofessional as clients who won’t
collaborate with developers. It’s imper-
ative that clients realize that they have
a professional responsibility and ac-
countability for cost-effective software
development and deployment and that
coming up with lists of pretty require-
ments for the propeller-headed geeks
isn’t acceptable.

T he Prototyping Partnership Principle
is the indispensable way of getting
developers and clients to produc-

tively learn from each other from a po-
sition of parity rather than the typical
master-slave asymmetry.

If the benefits of partnership don’t
outweigh its costs, partnership will fail.
However, my work with companies
worldwide has convinced me that the
most robust software, and the most
cost-effective software deployments,
have been the products of prototyping
partnerships between professionals.

Michael Schrage is a codirector of the MIT Media
Lab’s eMarkets Initiative and an instructor on innovation eco-
nomics for several MIT executive education programs. He is au-
thor of Serious Play: How the World’s Best Companies Simulate
to Innovate (Harvard Business School Press, 2000). Contact him
at schrage@media.mit.edu.

	footer1:

