
University of Southern California
Center for Systems and Software Engineering

When Does Requirements Volatility
Stop All Forward Progress?

Jo Ann Lane and Barry Boehm
University of Southern California

Center for Systems and Software Engineering
http://csse.usc.edu

Practical Software and Systems Measurement
User’s Group Conference

Golden, Colorado
July 2007

2

University of Southern California
Center for Systems and Software Engineering

Overview

• Requirements: what are they and what are
their characteristics?

• Requirements volatility: all changes are
not “equal”

• Quantitative observations about
requirements volatility

• Conclusions

Applies to systems, complex systems,
and systems of systems (SoSs)

3

University of Southern California
Center for Systems and Software Engineering

What is a Requirement
• IEEE Std 1220-1998: Standard for Application and

Management of the Systems Engineering Process
A statement that identifies a product or process operational, functional, or
design characteristic or constraint, which is unambiguous, testable or
measurable, and necessary for product or process acceptability (by consumers
or internal quality assurance guidelines).

• SEI [CMMI 2001]:
(1) A condition or capability needed by a user to solve a problem or achieve an
objective.
(2) A condition or capability that must be met or possessed by a product or
product component to satisfy a contract, standard, specification, or other
formally imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2).
[IEEE 610.12-1990]

4

University of Southern California
Center for Systems and Software Engineering

Cockburn Hierarchy as it Relates to
Requirements

5

University of Southern California
Center for Systems and Software Engineering

Hierarchy of Requirements
Capability

General Req1 General Reqn
…

Component System1 Component System2 Component System3 Component SystemN…
CS1 req1
CS1 req2
…
CS1 reqN

CS2 req1
CS2 req2
…
CS2 reqN

CS3 req1
CS3 req2
…
CS3 reqN

CSN req1
CSN req2
…
CSN reqN

6

University of Southern California
Center for Systems and Software Engineering

Types of Requirements

• Functional
• Interfaces
• Level of service (e.g., performance targets,

interoperability*, security*, safety)
• Design constraints
• Quality attributes
• Acquisition (e.g., cost and schedule)
• Process

* Cited as the most important areas for SoSs [Kriegel, 1999].

7

University of Southern California
Center for Systems and Software Engineering

Some Key Purposes for Requirements

• Specify needed system capabilities
• Coordinate work performed by multiple

organizations/vendors (or to prevent incompatible
design decisions within the system architecture)

• Ensure interoperability and compatibility between
system components

• Control cost/schedule
• Establish acceptance criteria for development

work performed

8

University of Southern California
Center for Systems and Software Engineering

Why Do Requirements Change*?
• Changing business/user needs

– Environment changes – Market trends
– Legislative changes – New technology

• Incorporation of COTS upgrades
• Resolve requirements conflicts
• Specify missing requirements
• Manage cost/schedule
• Adjustment of requirements in response to design decisions
• Derivation of lower level requirements as solution evolves

* “Requirements change” as investigated here is the evolution of
requirements over time, not the resolution of defective requirements

9

University of Southern California
Center for Systems and Software Engineering

Overview

• Requirements: what are they and what are
their characteristics?

• Requirements volatility: all changes are
not “equal”

• Quantitative observations about
requirements volatility

• Conclusions

10

University of Southern California
Center for Systems and Software Engineering

Requirements Volatility Definitions
• Requirements change

– Change to a baselined set of requirements
– For projects where requirements are not baselined (e.g., agile

projects), change to an operational capability
• Volatility

– Rate of requirements change over time or per increment of
development

• Impact of volatility
– Effort and schedule changes other than those associated with

actual effort/schedule required to implement the requirement
– Includes

• Rework
– Work already completed for current increment
– Increased defect densities associated with incomplete change

analysis/attempted schedule compression
• Delays due to related approval and contract modification activities
• Productivity impacts due to project staff frustration

11

University of Southern California
Center for Systems and Software Engineering

Influences on Effort to Change a
Capability/Requirement

• Scope of change
• Level of change
• Number of components affected by requirement

change
• Targeted increment for requirement implementation

(current vs. future)
• Impact of change for each affected component

– Number of component levels affected
– Number of lower level suppliers affected

• How tightly coupled requirements are to supplier
contracts at various levels

12

University of Southern California
Center for Systems and Software Engineering

Influences on Schedule Required to
Change a Capability/Requirement

• Time to assess impact of proposed requirement
change

• Time to approve proposed requirement change
(e.g., number of approvers)

• Time to flow down requirement change (e.g.,
number of required contract changes)

• Time to implement requirement change (e.g.,
scope of requirement change/required rework)

13

University of Southern California
Center for Systems and Software Engineering

Influences on System
Requirements Volatility

• Number of system missions/objectives
• Stability of system missions/objectives (e.g.,

business needs)
• System architecture stability/maturity
• Stability/maturity of system components
• Technology maturity/changes

14

University of Southern California
Center for Systems and Software Engineering

Overview

• Requirements: what are they and what are
their characteristics?

• Requirements volatility: all changes are
not “equal”

• Quantitative observations about
requirements volatility

• Conclusions

15

University of Southern California
Center for Systems and Software Engineering

Scenarios for Analysis of Impacts
1. Early: Proposed requirement change received during

requirements identification/analysis phase
a. Limited scope
b. Pervasive scope/no outside suppliers affected
c. Pervasive scope/outside suppliers affected

2. Middle: Proposed requirement change received during
implementation phase

a. Limited scope
b. Pervasive scope/no outside suppliers affected
c. Pervasive scope/outside suppliers affected

3. Late: Proposed requirement change received during
integration and test phase

a. Limited scope
b. Pervasive scope/no outside suppliers affected
c. Pervasive scope/outside suppliers affected

16

University of Southern California
Center for Systems and Software Engineering

Findings of System Dynamics Models Used to
Evaluate Requirements Volatility

• Ferreira Model*
– Evaluates the effects of requirements

volatility on a software project’s cost,
schedule, and quality

– Based on survey data from 232 projects
• Over 78% of respondents

experienced some level of
requirements volatility

• Average increase in software size
due to volatility: 32%

– Once the design process begins, the
impact of requirements change is
progressively greater

– Captures low morale impacts (reduced
productivity, higher error rates)

• Madachy et al** Model
– Reduction of impacts by deferring

as much change as possible to
future increments

– Effort and schedule impacts when
using various size teams in a hybrid
agile/plan-driven approach

* Ferreira S, Collofello J, Shunk D, Mackulak G, Wolfe P. Utilization of Process Modeling and Simulation in Understanding
the Effects of Requirements Volatility in Software Development. Proceedings of the 4th International Workshop on Software
Process Simulation and Modeling, Portland OR, 2003., 2002.
** Madachy, R., Boehm, B., Lane, J. (2006); "Assessing Hybrid Incremental Processes for SISOS Development", USC CSSE
Technical Report USC-CSSE-2006-623.

17

University of Southern California
Center for Systems and Software Engineering

Findings of System Dynamics Models Used to
Evaluate Requirements Volatility

• Brooks’ Law Model*
– Adding more people late in the

game can make the project
later

– Due to
• Reduced productivity of

initial staff to train new
staff

• Reduced productivity of
new staff

• Repenning’s Model**
– Impact of fire fighting

techniques to handle late
changes

– Leads to
• Increased overtime
• Staff burn-out and turnover
• Continued fire fighting to

work new issues
introduced in previous fire
fighting activities

* Madachy, R., Software Process Dynamics, Wiley/IEEE Computer Society Press, 2007.
** Repenning, N., “Understanding Fire Fighting in New Product Development”, Journal of Product Innovation
Management, 18, pp. 285-200, 2001.

18

University of Southern California
Center for Systems and Software Engineering

Range of Requirements
Volatility Profiles

• Continual periodic
change across
increment

• Single mid-increment
re-alignment

• Deferral to next
increment

Change
Rate

Increment Phases

Change
Rate

Increment Phases

Change
Rate

Inc n Inc n+1

19

University of Southern California
Center for Systems and Software Engineering

Average Change Processing Time:
Based on Data From Two SoSs

0
20
40
60
80

100
120
140
160

Within
Groups

Across
Groups

Contract
ModsA

ve
ra

ge
 W

or
kd

ay
s

to
 P

ro
ce

ss

C
ha

ng
es

• Plan for continual change and the
development of future baselines

• Most SoS changes are typically
across groups and may also
require contract modifications to
flow down changes to multiple
suppliers and vendors

• Must also negotiate changes with
strategic partners

• Need to minimize impacts to
increment currently under
development

• Need to continually monitor
evolution (changes in) the
component systems for potential
SoS impacts

20

University of Southern California
Center for Systems and Software Engineering

“Cost” to Change a Requirement with
Relatively Local Scope

Start Req
Analysis

Design Implement Test

Phase Change Initiated

R
el

at
iv

e
Ef

fo
rt

Req Addition
Req Modification
Req Deletion

Nominal Effort

When comprehensive regression tests required to verify change
(e.g., re-execution of acceptance tests),

costs can exceed 100x the nominal effort to change the requirement

21

University of Southern California
Center for Systems and Software Engineering

Risk-Driven Scalable Spiral Model:
Increment View

Short, Stabilized
Development

of Increment N

Rapid
Change

High
Assurance

Increment N Transition
Increment N Baseline

Short
Development
Increments

Foreseeable
Change

(Plan)

Stable Development
Increments

22

University of Southern California
Center for Systems and Software Engineering

Agile
Rebaselining for

Future Increments

Short, Stabilized
Development

of Increment N

Verification and
Validation (V&V)
of Increment N

Deferrals

Artifacts Concerns

Rapid
Change

High
Assurance

DIN+1 Baseline LCA DIN+1 Re-Baselined LCA

DIN LCA DIN IOC

Future Increment Baselines

Increment N Transition/
Operations and Maintenance

Future V&V
Resources

Increment N Baseline

Current V&V
Resources

Unforeseeable Change (Adapt)

Short
Development
Increments

Foreseeable
Change

(Plan)

Stable Development
Increments

Continuous V&V

Hybrid Process for Managing Increments

23

University of Southern California
Center for Systems and Software Engineering

Overview

• Requirements: what are they and what are
their characteristics?

• Requirements volatility: all changes are
not “equal”

• Quantitative observations about
requirements volatility

• Conclusions

24

University of Southern California
Center for Systems and Software Engineering

Conclusions

• Initial Question: When does requirements
volatility stop all forward progress?

• Answer: It depends…
– Continual, unending change: Probably for projects

with higher change rates
– A “few” controlled bursts: Maybe, but not for long
– Deferral to next increment: Probably not

25

University of Southern California
Center for Systems and Software Engineering

Conclusions (continued)

• “Change” is required to evolve systems in needed directions
• How change is handled can affect impact to cost, schedule,

and developer productivity
– Architecting for change
– Having adequate staff very familiar with the system
– Immediate change vs. deferral to future increments

• Business processes that can significantly add to change
“overhead”
– Starting development before key stakeholders have agreed on

core requirements
– Starting detailed development before determining architecture

feasibility
– Requiring contract modifications to implement changes
– Adding changes late in a development cycle

