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Summary

e Current and future trends create challenges for DoD
systems and software data collection and analysis

— Mission challenges: emergent requirements, rapid change, net-
centric systems of systems, COTS and services, high

assurance with agility
— DoD initiatives: DoDI 5000.02, evolutionary acquisition,
competitive prototyping, time-certain milestones
 Updated software data definitions and estimation
methods could help DoD systems management

— Examples: incremental and evolutionary development; COTS
and services; net-centric systems of systems

— Further effort and coordination needed to converge on these
— Being addressed in Brad Clark workshop this afternoon
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Current and Future DoD Challenges

Emergent requirements

— Cannot prespecify requirements, cost, schedule, EVMS
— Need to estimate and track early concurrent engineering
Rapid change

— Long acquisition cycles breed obsolescence

— DoDI 5000.02 emphasis on evolutionary acquisition

Net-centric systems of systems
— Incomplete visibility and control of elements

Model, COTS, service-based, Brownfield systems
— New phenomenology, counting rules

Always-on, never-fail systems
— Need to balance agility and high assurance
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The Broadening Early Cone of Uncertainty (CU)

 Need greater investments in
Global Interactive, narrOWing CuU

Brownfield . . .
— Mission, investment, legacy
analysis

— Competitive prototyping
— Concurrent engineering

— Associated estimation
Co I0C methods and management
metrics

X8

X4

X2
Batch, Greenfi€

Local Interactive,
Some Legac

 Larger systems will often
have subsystems with
narrower CU’s
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COSYSMO Operational Concept

| # Requirements
| # Interfaces
| # Scenarios

| # Algorithms
+
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Multipliers

1- Application factors :
| -8 factors :
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|
|

Size
Drivers -‘ COSYSMO

A

Calibration

' -6 factors
- Schedule driver
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TOC

COSYSMO Application Factor Selection

See Embedded Comments for
Descriptions and Selection Criteria

Select the Rating from the pullc

COSYSMO Application | Cg::;"t Suﬂfﬁztm OW | LOW | NOM | HIGH |VHIGH |XHIGH | Rating |IResulting | Application Factor Rating Selection
Factor Description Rang Rango (WL {L) {M) {H) (WH} | (¥H) | Selected ultiplier Comments
Requirements ROMT | 1.7 173 | 140 | 120 | 1.00 | 090 | 081 | == N 1.00
Understanding
Architecture ARCH | 166 | 166 | 128 | 114 | 00 | 088 | 077 | == N 00
Complexity
Level of Service (KPP) | o\ /é.ﬁl] 250 | 0.66 | 083 | 1.00 \1%3 165 | = | N 1.&0
Requirements
Migration Complexity | MIGR | 150 | 150 | == | == | 100 | 125 [\50 | == N 1.n}\
No. and Diversity of e | —
- A INST/ 150 | 1.50 100 | 125 | 150 N 1.uu\
No.of Recursive Levels| peoy | 450 | 150 | 082 | 091 | 100 | 142 | 123 | = N 1.00
in the Design
Documentationto | poeyy | ooz | g7 |08z | 091 | 100 | 142 | 123 | = | N 1.00
1| Match Lifecycle Needs ) ’ ) ) ) ) ) )
Technology Maturity %AAT 250 | 250 | 1.75 | 137 | 1.00 | 085 | 070 | == N \r\{u

el el s

Productivity Range (PR} is
the Highest Number /
Lowest Number and is an
indication of the "Relative
Degree of Influence™ of
this parameter on SE
effort as currently

The "Suggested” column has no immediate impact in the CO5YSMO SE Costing Mode.,
However, for the COSYSMO SE Data Collection Mode, it serves as a means of collecting your
inputs as to what you think the "Relative Degree of Influence” of this parameter should be
based upon your overall experience {(hot specific to the past program being characterized).
If you agree with the "Current” number, do nothing. If you disagree, simply overwrite the
current number with a new number n (n>1.0) in the appropriate cell.

4| » W[ 4. ParametersI { 5. ParametersII { 6a. Staffing Table /£ 6b. Staffing Chart # 7. Labor Distribution # Local SE Data Repository ' 8a. Application Factors ¢ 6t |4

that best represents the Rating
program being estimated in the
™Mode or in the SE Data Collectic
Rating that best characterizes t
program for which you are proy
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COSYSMO Change Impact Analysis — |
— Added SysE Effort for Going to 3 Versions

e Size: Number, complexity, volatility, reuse of system
requirements, interfaces, algorithms, scenarios (elements)

— 1->3 Versions: add 3-6% per increment for number of elements
add 2-4% per increment for volatility

— Exercise Prep.. add 3-6% per increment for number of elements
add 3-6% per increment for volatility

 Most significant cost drivers (effort multipliers)
— Migration complexity: 1.10 — 1.20 (versions)
— Multisite coordination: 1.10 — 1.20 (versions, exercise prep.)
— Tool support: 0.75 — 0.87 (due to exercise prep.)
— Architecture complexity: 1.05 - 1.10 (multiple baselines)
— Requirements understanding: 1.05 - 1.10 for increments 1,2;
1.0 for increment 3; .9-.95 for increment 4
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COSYSMO Change Impact Analysis — Il

— Added SysE Effort for Going to 3 Versions

Cost Element | Incr.1 Incr. 2 Incr. 3 Incr. 4
Size 1.11-1.22 1.22-1.44 1.33-1.66 1.44-1.88
Effort Product | 1.00-1.52 1.00-1.52 0.96 - 1.38 0.86-1.31
Effort Range 1.11-1.85 1.22-2.19 1.27 -2.29 1.23-2.46
Arithmetic Mean 1.48 1.70 1.78 1.84
Geometric Mean 1.43 1.63 1.71 1.74

6/25/2009
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COSYSMO Requirements Counting Challenge

 Estimates made in early stages
— Relatively few high-level design-to requirements

o Calibration performed on completed projects
— Relatively many low-level test-to requirements

 Need to know expansion factors between levels
— Best model: Cockburn definition levels
» Cloud, kite, sea level, fish, clam

« Expansion factors vary by application area, size
— One large company: Magic Number 7
— Small e-services projects: more like 3:1, fewer lower levels

Survey form available to capture your experience

6/25/2009 ©USC-CSSE 9
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Next-Generation Systems Challenges

e Emergent requirements
— Example: Virtual global collaboration support systems
— Need to manage early concurrent engineering

‘- Rapid change

— In competitive threats, technology, organizations,
environment

 Net-centric systems of systems
— Incomplete visibility and control of elements

« Model, COTS, service-based, Brownfield systems
— New phenomenology, counting rules

 Always-on, never-fail systems
— Need to balance agility and high assurance
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Rapid Change Creates a Late Cone of Uncertainty
— Need evolutionary/incremental vs. one-shot development

4x
Uncertainties in competition,
technology, organizations,
2% mission priorities
1.5%
1.25%—

Relative
Cost Range

0.8x—r
0.67x —t
0.5%—
0.25xt Product Detail
Concept of Rats. Design Design Accepted
Operation Spec. Spec. Spec. Software
A A A A A A
Feasibility Plans Product Detail Devel. and
and Design Design Test
Rats.

Phases and Milestones
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Evolutionary Acquisition per New DoDI 5000.02
No clean boundary between R&D and O&M

DaoD

Strategic Guidance
1

Joint Operating Concepts
Joint Functional Concepts
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Incremental Development Productivity Decline (IDPD)

« Example: Site Defense BMD Software
— 5 builds, 7 years, $100M; operational and support software
— Build 1 productivity over 300 LOC/person month

— Build 5 productivity under 150 LOC/PM
* Including Build 1-4 breakage, integration, rework
« 318% change in requirements across all builds
« |IDPD factor = 20% productivity decrease per build

— Similar trends in later unprecedented systems
— Not unique to DoD: key source of Windows Vista delays

 Maintenance of full non-COTS SLOC, not ESLOC
— Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
— Build 2: 400 KSLOC of Build 1 software to maintain, integrate

6/25/2009 ©USC-CSSE 13
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IDPD Cost Drivers:
Conservative 4-Increment Example

« Some savings: more experienced personnel (5-20%)
 Depending on personnel turnover rates

« Some increases. code base growth, diseconomies of
scale, requirements volatility, user requests

 Breakage, maintenance of full code base (20-40%)
 Diseconomies of scale in development, integration
(10-25%)
 Requirements volatility; user requests (10-25%)
 Best case: 20% more effort (IDPD=6%)
* Worst case: 85% (IDPD=23%)

6/25/2009 ©USC-CSSE 14
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Effects of IDPD on Number of Increments

Model relating productivity decline to
number of builds needed to reach 8M
SLOC Full Operational Capability
Assumes Build 1 production of 2M SLOC
@ 100 SLOC/PM

— 20000 PM/ 24 mo. = 833 developers

— Constant staff size for all builds

Analysis varies the productivity decline
per build
— Extremely important to determine the
iIncremental development
productivity decline (IDPD) factor per
build

6/25/2009 ©USC-CSSE
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Incremental Development Data Challenges

 Breakage effects on previous increments
— Modified, added, deleted SLOC: need Code Count with diff tool

e Accounting for breakage effort

— Charged to current increment or I&T budget (IDPD)
« IDPD effects may differ by type of software

— “Breakage ESLOC” added to next increment
— Hard to track phase and activity distributions
 Hard to spread initial requirements and architecture effort
e Size and effort reporting
— Often reported cumulatively
— Subtracting previous increment size may miss deleted code

 Time-certain development
— Which features completed? (Fully? Partly? Deferred?)

6/25/2009 ©USC-CSSE 16
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“Equivalent SLOC” Paradoxes

e Not a measure of software size
e Not a measure of software effort
 Not a measure of delivered software capability

A guantity derived from software component sizes
and reuse factors that helps estimate effort

« Once aproduct or increment is developed, its
ESLOC loses its identity
— Its size expands into full SLOC

— Can apply reuse factors to this to determine an ESLOC
guantity for the next increment

e But this has no relation to the product’s size

6/25/2009 ©USC-CSSE 17
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Current and Future DoD Challenges

Emergent requirements

— Cannot prespecify requirements, cost, schedule, EVMS
— Need to estimate and track early concurrent engineering
Rapid change

— Long acquisition cycles breed obsolescence

— DoDI 5000.02 emphasis on evolutionary acquisition

Net-centric systems of systems
— Incomplete visibility and control of elements

Model, COTS, service-based, Brownfield systems
— New phenomenology, counting rules

Always-on, never-fail systems
— Need to balance agility and high assurance

.
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Net-Centric Systems of Systems Challenges

 Need for rapid adaptation to change
— See first, understand first, act first, finish decisively

e Built-in authority-responsibility mismatches

— Increasing as authority decreases through Directed,
Acknowledged, Collaborative, and Virtual SoS classes

« Severe diseconomies of scale
— Weak early architecture and risk resolution
— Need thorough flowdown/up of estimates, actuals
— More complex integration and test preparation, execution

« More software intensive
— Best to use parallel software WBS

« Many different classes of system elements
— One-size-fits-all cost models a poor fit

6/25/2009 ©USC-CSSE 19
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Added Cost of Weak Architecting

Calibration of COCOMO Il Architecture and Risk Resolution
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Model, COTS, Service-Based, Brownfield Systems
New phenomenology, counting rules

Product generation from model directives
— Treat as very high level language: count directives

Sizing COTS and services use needs improvement
— Unrealistic to use COTS, services SLOC for sizing

— Alternatives: function point elements, amount of glue code,
activity-based assessment costing, tailoring parameters

Brownfield legacy constraints, re-engineering

— Re-engineer legacy code to fit new architecture

— Apply reuse model for re-engineering

A common framework for reuse, incremental
development, maintenance, legacy re-engineering?
— All involve reusing, modifying, deleting existing software

6/25/2009 ©USC-CSSE 21
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Achieving Agility and High Assurance -I
Using timeboxed or time-certain development
Precise costing unnecessary; feature set as dependent variable

L)

Ll

Short
Development

Foreseeable =
Change Short, Stabilized N
(Plan) Increment N Transition/O&M
x » Development >
Increment N Baseline Of Increment N
y ¥
High
ssurance’/ Stable Development
Increments
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Achieving Agqility and High Assurance -Il

Unforeseeable Change (Adapt)

A 4

Rapid Agile Future Increment Baselines
Change Rebaselining for >
Future Increments
Foreseeable ! Short Deferrals
| Development
Change'
(Plan) ' LIncrements._|.__, —
v Short, Stabilized Increment N Transition/
> Development _ —
: P
InrcrementNBaseIme ______ of Increment N Operations and Maintenance
! Stable Development
_ pcrements \Artifacts ‘Concerns
High
Assurance Future V&V

Current V&V | Verification and .
> - -
Resources | Validation (V&V) Resources

E‘"'C'dﬁii'ﬁu'dué'v&v ...... .| of Increment N
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Related Additional Measurement Challenges

Tracking progress of rebaselining, V&V teams
— No global plans; individual changes or software drops
— Earlier test preparation: surrogates, scenarios, testbeds

Tracking content of time-certain increments
— Deferred or partial capabilities; effects across system

Trend analysis of emerging risks
— INCOSE Leading Indicators; SERC Effectiveness Measures

Contributions to systems effectiveness
— Measures of Effectiveness models, parameters

Systems of systems progress, risk, change tracking
— Consistent measurement flow-up, flow-down, flow-across

6/25/2009 ©USC-CSSE 24
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Software data definition topics for discussion

In Brad Clark workshop this afternoon

« Ways to treat data elements

COTS, other OTS (open source; services; GOTS; reuse; legacy code)
Other size units (function points object points, use case points, etc.)
Generated code: counting generator directives

Requirements volatility

Rolling up CSCls into systems and systems of systems

Cost model inputs and outputs (e.g., submitting estimate files)

e Scopeissues

Cost drivers, Scale factors
Reuse parameters: Software Understanding , Programmer Unfamiliarity

Phases included: hardware-software integration; systems of systems
integration, transition, maintenance

WBS elements and labor categories included
Parallel software WBS

e How toinvolve various stakeholders

6/25/2009

Government, industry, commercial cost estimation organizations
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Summary

e Current and future trends create challenges for DoD
systems and software data collection and analysis

— Mission challenges: emergent requirements, rapid change,
net-centric systems of systems, COTS and services, high
assurance with agility

— DoD initiatives: DoDI 5000.02, evolutionary acquisition,
competitive prototyping, time-certain milestones
 Updated software data definitions and estimation
methods could help DoD systems management

— Examples: incremental and evolutionary development; COTS
and services,; net-centric systems of systems

— Further effort and coordination needed to converge on these
— Being addressed in Brad Clark workshop this afternoon

6/25/2009 ©USC-CSSE 26
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Backup Charts
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Percent of Time Added to Overall Schedule
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How Much Architecting is Enough?

- Larger projects need more

100 -
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o
|

Sweet Spot

o
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Percent of Time Added for Architecture and

Risk Resolution
©USC-CSSE

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO Il RESL factor)

Total % Added Schedule

Sweet Spot Drivers:
Rapid Change: leftward

High Assurance: rightward
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TRW/COCOMO Il Experience Factory: IV

¢ A
Rescope
— _ N Execute
System objectives: Y _
: : 0 project
fcn’y, perf., quality Cost,
_ Sched, to next Revise
B Risks Yes | Milestone Milestones
> COCOMO Il [— ’
- . > Plans,
orporate parameters: / M/S Resources
tools, processes, reuse ) Milestone plans Result
7y resources No
Improved Cost, Sched, : > Ok? )<
Corporate Quality Milestone Revised
Parameters v drivers expectations Yes Expectations
Evaluate Accumulate
Corporate < COCOMO I Done? ",
SW Recalibrate calibration
Improvement COCOMO I data Yes
Strategies
End
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Choosing and Costing
Incremental Development Forms

Type Examples Pros Cons Cost Estimation
. Small: Agile Adaptability to Easiest-first; late, Small: Planning-poker-type
Evolutionary . L
; Large: Evolutionary change costly breakage Large: Parametric with IDPD
Sequential
Development
. Platform base plus Prespecifiable Emergent COINCOMO with no increment
Prespecified - ;
: PPPIs full-capability reguirements or overlap
Sequential : .
requirements rapid change
Overlapped Product lines with Modular product  Cross-increment Parametric with IDPD and
Evolutionary ultrafast change line breakage Requirements Volatility
o Mainstream High assurance Highly coupled COINCOMO, IDPD for
Rebaselining product lines; with rapid change systems with development; COSYSMO for
Evolutionary Systems of very rapid change rebaselining
systems

IDPD: Incremental Development Productivity Decline, due to earlier increments breakage, increasing
code base to integrate

PPPIs: Pre-Planned Product Improvements
COINCOMO: COCOMO Incremental Development Model (COCOMO Il book, Appendix B)
COSYSMO: Systems Engineering Cost Model (in-process COSYSMO book)

All Cost Estimation approaches also include expert-judgment cross-check.
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Compositional approaches: Directed systems of systems

LCO LCA 10C,
Elaboration
Inception Source SoS Increment 1 Inc;ements
Selection Architecting e N
T j7mmmm-o------: Customer,
Effort COSYSMO-like. ;FFI’ StC_)W, <<.E) P e : ! Users
AAAAA vaiuations = 2 | sources of : :
Schedule = ) T Q Change' ! i
Effort/Staff Contracting ael o= Negotiat | ! LSI—
653 9% egotiate b ol Aile
Trv to model B 1% rebaselined \ Similar, with ;A9
..... Y . Effort/Staff <? x| LCA ' added change!
ideal staff size > s e 2 i . i
= o ackage at ' traffic from
= 29 packag - | LSI IPTs —
‘S D X al ' users... _
= xS : ) Agile
© COSOSIMO : 5
COSOSIMO g' ‘ -like ; :
-like o Effort/staff : i : _
O \ atall levels I : SUpp“.erS
bmmmmmmm e ' Agile
L :Al L(:A2| """"""""" 1
Develop to \ Similar, with | Suppliers —
_ SPYCORADMO ' addedre- @ PD-V&V
— -like baselineing risks
risks,  risks, Risk-manage ’ v and rework... |
Degree of /'rework/vrework slow- ~{Trework R : LSI —
Completene performer, risks Integrators
B= Proposal completeness COSOSIMO Jework
Feasibility \_Il(y /
LCA, shortfalls
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Comparison of Cost Model Parameters

Parameter Aspects

COSYSMO

COSOSIMO

Size drivers

# of system requirements
# of system interfaces

# operational scenarios
# algorithms

# of SoS requirements

# of SoS interface protocols

# of constituent systems

# of constituent system organizations
# operational scenarios

“Product” characteristics

Size/complexity

Requirements understanding
Architecture understanding

Level of service requirements

# of recursive levels in design
Migration complexity

Technology risk

#/ diversity of platforms/installations
Level of documentation

Size/complexity

Requirements understanding
Architecture understanding

Level of service requirements
Component system maturity and stability
Component system readiness

Process characteristics

Process capability
Multi-site coordination
Tool support

Maturity of processes

Tool support

Cost/schedule compatibility
SoS risk resolution

People characteristics

Stakeholder team cohesion
Personnel/team capability
Personnel experience/continuity

Stakeholder team cohesion
SoS team capability

6/25/2009
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SoSE Core Element Mapping to

COSOSIMO Sub-models

Translating Understanding

COSOSIMO capability systems &

objectives relationships

Planning,

Requirements Developing,

evolving and

Manage_men_t’ maintaining

and Architecting g _505 .
(PRA) esignsarc

Source Selection _
Orchestrating

and Supplier upgrades
Oversight (SO) 10 e

SoS Integration
and Testing
(1&T)

Monitoring

& assessing
changes
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Addressing new

requirements
& options

Assessing
(actual)

performance
to capability

objectives
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