

Avoiding the tar pit of numbers

Challenges of Statistical Analysis with Software Engineering Data

Dave Card David.card@dnv.com

Agenda

- Background
- Data Issues
- Statistical Challenges
- Summary

- Many forces encourage increased use of statistical analysis in management and improvement of software (and other) engineering processes, e.g., CMMI, Six Sigma
 - Process Performance Models
- Bad analysis leads to bad decisions correctness is a CMMI appraisal issue

- Building mathematical models based on data
- Using those models to evaluate or estimate measurable phenomena
- Quantifying the uncertainty associated with models and decisions

A model underlies every statistical analysis technique

Data Issues

- Alignment
- Quality
- Quantity
- Linkage

- Data and analysis must be linked to something important to be useful, i.e., aligned with goals
- Many organizations only start to approach goals systematically at higher levels of maturity

Establish objectives before anything else.

Quality

- Most measurement involves humans
 - Misinterpretation is common
 - Motivation is important
- Quality of data is not really known until analysis is attempted

Good definitions, incremental implementation, and early feedback help.

- Processes often not designed to be measured (or managed)
 - Large activities => infrequent data
 - Lean process designs make more data available
- Amount of data needed depends on analysis technique (degrees of freedom)
- Experiments (Six Sigma) versus Measurement Programs (CMMI)

Large amounts of data are not always necessary for meaningful analysis.

- Individual databases are often constructed for specific purposes (e.g., peer reviews, estimation, problem reports, earned value) by different groups
- Many important problems require consideration of data from multiple sources
- Important potential linkages include: project, phase, artifact

Define a "master plan" encompassing all repositories.

Statistical Challenges

- Distributions, Types, and Scales
- Significance and Substance
- Interpreting Causality

No silver bullet – find the right technique for your data.

- Probability density function (continuous) or probability distribution (discrete)
- Nominal and ordinal data cannot be normally distributed
- Distributions of data from <u>interval</u> and <u>ratio</u> scales be observed (e.g., histogram) or inferred
 - Normal
 - Poisson
- Distribution of sample means may help (≠ law of large numbers)
- Avoid transformations

Look at the data before attempting statistical analysis.

14 12 10 # of Inspections 8 6 4 2 0 0.833333333333333333 7.44333333333333 to 14.053333333333 to 20.663333333333 to 27.2733333333333 to 33.88333333333 to <14.05333333333333 <20.663333333333 <27.273333333333 <33.883333333333 <40.49333333333333 to <7.443333333333333

Defects/KLOC

Defect Rate

	Second Measure		
First Measure	Nominal	Ordinal	Interval and Ratio
Nominal	Chi-square	Friedmann ANOVA	Normal ANOVA
Ordinal		Spearman Correlation	Spearman Correlation
Interval and Ratio			Regression Pearson Correlation

Substance and Significance

- Not all significant relationships (p) are substantive
- Consider magnitude of difference or use r² to assess importance of regression relationships

Look for important relationships first, then try to show them as significant.

Statistical Decision-Making

Conditions for Causality

Association

- Cause strictly precedes effect
- Mechanism for interaction

Many people has an instinctive understanding of causal analysis, which is wrong.

Hours of Inspection Preparation

25 June 2009

- Statistical analysis is about modeling
- Nature of data determines the appropriate analysis technique
- Data collection must be planned with intended analysis in mind
- Use a systematic approach to causal analysis
- Learn and adapt