SCRAM: A Method for Assessing Schedule Compliance Risk

PSM Users Group 2011

Mystic, CT July 2011

Angela Tuffley

Systems and Software Quality Institute Queensland, Australia

Betsy Clark

Software Metrics Inc. Haymarket, VA

Adrian Pitman

Defence Materiel Organisation Australian Dept of Defence

Brad Clark

Software Metrics Inc. Haymarket, VA

What does SCRAM mean?

- Go away!
- Secure Continuous
 Remote Alcohol
 Monitoring
 - □ As modeled here by Lindsay Lohan
- Schedule Compliance
 Risk Assessment
 Methodology

SplashNewsOnline.com/Hollywood.tv

SCRAM

Schedule Compliance Risk Assessment Methodology

Collaborative effort:

- □ Australian Department of Defence
 - Defence Materiel Organisation
- Systems and Software Quality
 Institute, Brisbane, Australia
- Software Metrics Inc., Haymarket,
 VA

DMO SCRAM Usage

- SCRAM has been sponsored by the Australian Defence Materiel Organisation (DMO)
 - To improve our Project Schedule Performance in response to Government concern as identified by the Australian National Audit Office (ANAO)
 - ANAO is equivalent to the US Government Accountability Office (GAO)
- DMO equips and sustains the Australian Defence Force (ADF)
 - □ Manages 230+ Major Capital Equipment Projects & 100 Minor (<\$20M) defence projects

DMO SCRAM Usage (cont.)

- SCRAM has evolved from our reviews of troubled programs
 - □ Schedule is almost always the primary concern of program stakeholders (delays to war fighter capability unacceptable)
 - SCRAM is a key component of our initiative to identify and remediate (and eliminate) root cause of schedule slippage

consolidate with 8 betsy clark, 7/5/2011 bc5

SCRAM Components

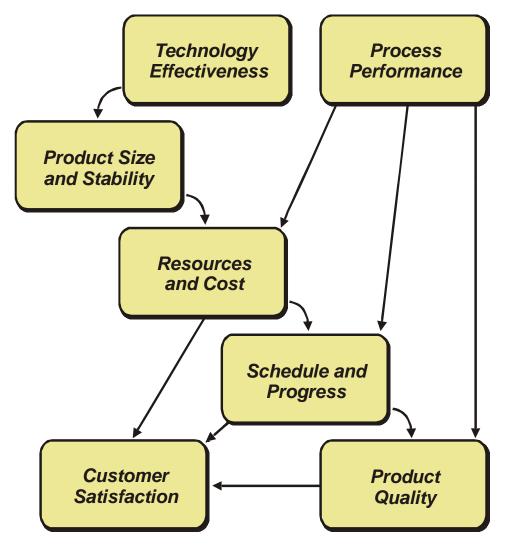
- Assessment Process consists of
 - Root Cause Analysis of Schedule Slippage
 - ☐ Schedule Health Check
 - □ Monte Carlo Analysis

What SCRAM is Not

- Not an assessment of technical feasibility
- Not an assessment of process capability
 - □ However, may be identified and treated as an issue if process performance is identified as contributing to slippage

Topics

- SCRAM Components
 - □ Root Cause Analysis Model
 - □ Schedule Health Checks
 - ☐ Monte Carlo Analysis
- Benefits of Using SCRAM
- SCRAM Key Principles
- SCRAM Process Reference / Assessment Model
- Future plans for SCRAM

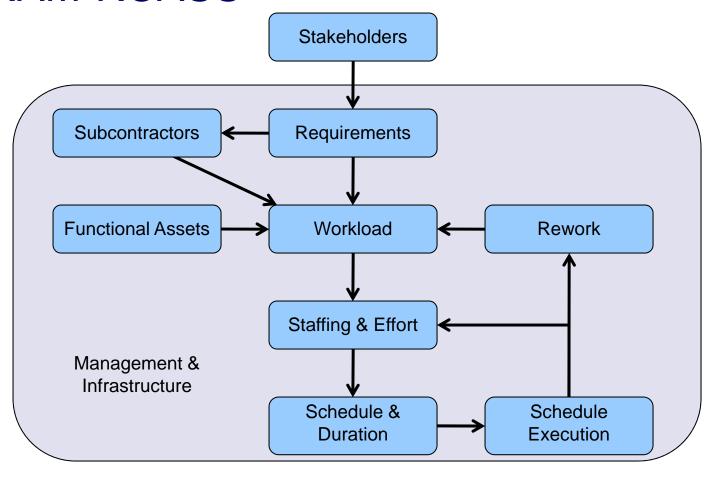


Angela takes over here betsy clark, 7/5/2011 bc16

Practical Software and Systems Measurement

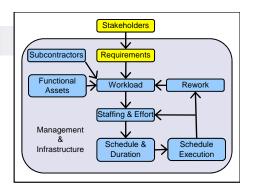
PSM Analysis Model

- Model evolved with experience on SCRAM assessments
- Used as guidance for
 - □ Asking questions during assessments
 - Categorizing the wealth of data and details
 - ☐ Highlighting missing information
 - Assessing the causes of slippage
 - □ Recommending a going-forward plan
 - Recommending measures to serve as leading indicators
 - For visibility and tracking in those areas where there are risks and problems
 - Similar to the use of the Structured Analysis Model in PSM to guide categorization of issues and risks via issue identification workshops



SCRAM-RCASS

Adapted from Integrated Analysis Model in McGarry et al.,

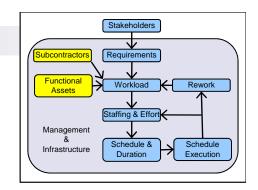

Practical Software Measurement: Objective
Information for Decision Makers

Stakeholders

□ "Our stakeholders are like a 100-headed hydra – everyone can say 'no' and no one can say 'yes'."

Requirements

☐ Misinterpretation of a communication standard led to an additional 3,000 requirements to implement the standard.



Root Cause Analysis - Examples

Subcontractor

 Subcontractor omitting processes in order to make delivery deadlines led to integration problems with other system components.

Functional Assets (COTS/Reused Code)

- □ Commercial-off-the-shelf (COTS) products that do not work as advertised, resulting in additional work or replacement with different products.
- □ Underestimating amount of software code that must be written/modified in a legacy system.

Root Cause Analysis - Examples

Stakeholders

Subcontractors

Requirements

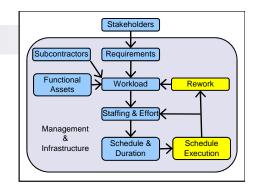
Functional Assets

Workload Rework

Management & Staffing & Effort

Management & Schedule & Schedule Execution

- Workload
 - Optimistic estimates
 - Source lines of code underestimated
 - Contract data deliverables workload often underestimated by both contractor and customer
- Staffing & Effort
 - ☐ High turnover, especially among experienced staff
- Schedule & Duration
 - □ Area of primary interest



Root Cause Analysis - Examples

Schedule Execution

- Schedule replans are not communicated to program staff or stakeholders
- □ Lack of, or poorly integrated, master schedule
- □ Integrated schedule elements not statused consistently across program. Actual status unknown.
- External dependencies not integrated or tracked

Rework

- □ Often underestimated or not planned for (e.g. defect correction)
- Management & Infrastructure
 - □ Lack of adequate test facilities (in terms of fidelity or capacity)

SCRAM Components

- Assessment Process consists of
 - □ Root Cause Analysis of Schedule Slippage
 - ☐ Schedule Health Check
 - ☐ Monte Carlo Analysis

Slide 16

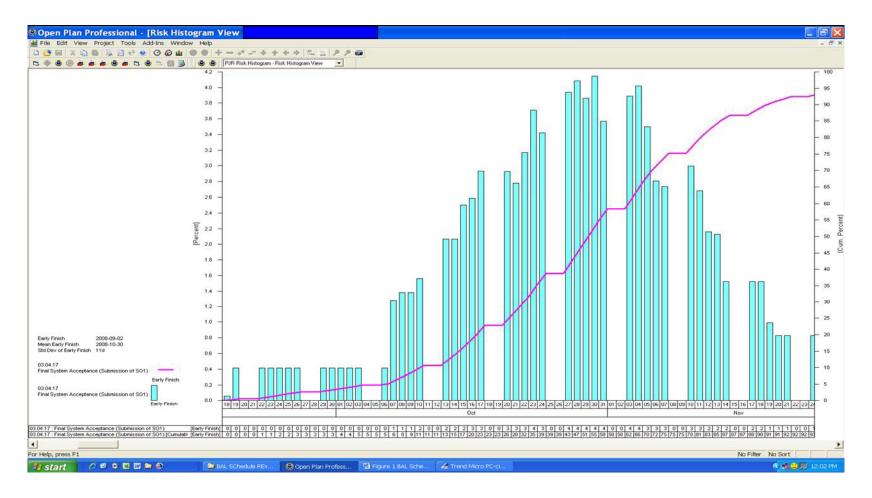
this doesn't match slide 19 betsy clark, 7/5/2011 bc14

17, 18, 20 & 22 could be reduced to one slide betsy clark, 7/5/2011 bc15

Schedule Health Checks

- To evaluate schedule construction and logic
 - Includes analyses of task dependencies, task constraints, and available schedule float
- Government, Prime, and Subcontractor schedule integration / alignment is reviewed
- Ensure external dependencies are included and linked in the schedule
 - □ Interfaces, resources, facilities, Government Furnished Equipment (GFE), test assets etc.
- Is there contingency in the schedule if risks are realized?
 - ☐ Or is the schedule so tight that nothing can go wrong?

Monte Carlo Analysis


- Allocate three point estimates to tasks on critical and near-critical path based on identified risks from RCASS
 - □ optimistic, pessimistic & most likely task duration

Monte Carlo Analysis Example

Topics

- SCRAM Components
 - □ Root Cause Analysis Model
 - □ Schedule Health Checks
 - ☐ Monte Carlo Analysis
- Benefits of Using SCRAM
- SCRAM Key Principles
- SCRAM Process Reference / Assessment Model
- Future plans for SCRAM

Angela takes over here betsy clark, 7/5/2011 bc13

SCRAM Benefits

- SCRAM root-cause analysis model (RCASS) useful in communicating the status of programs to all key stakeholders
 - □ Particularly executive management
- Identifies Root Causes of schedule slippage and permits early remediation action
- Provides guidance for collection of measures
 - ☐ Provides visibility and tracking for those areas where there is risk
- Provides confidence in the schedule

delete except move last bullet to next slide betsy clark, 7/5/2011 bc12

SCRAM - Benefit

- Validate schedule before execution
- Widely applicable
 - SCRAM can be applied at any point in the program life cycle
 - SCRAM can be applied to any major system engineering activity or phase
- Examples
 - □ Software-Hardware Integration
 - □ Aircraft Flight Testing
 - □ Installation/integration of systems on ship
 - Logistics Enterprise Resource Planning (ERP) application roll out readiness

Topics

- SCRAM Components
 - □ Root Cause Analysis Model
 - □ Schedule Health Checks
 - ☐ Monte Carlo Analysis
- Benefits of Using SCRAM
- SCRAM Key Principles
- SCRAM Process Reference / Assessment Model
- Future plans for SCRAM

SCRAM Key Principles

Minimal Disruption

- Information is collected one person at a time
- Interviews typically last an hour

Independent

 Review team members are organizationally independent of the program under review

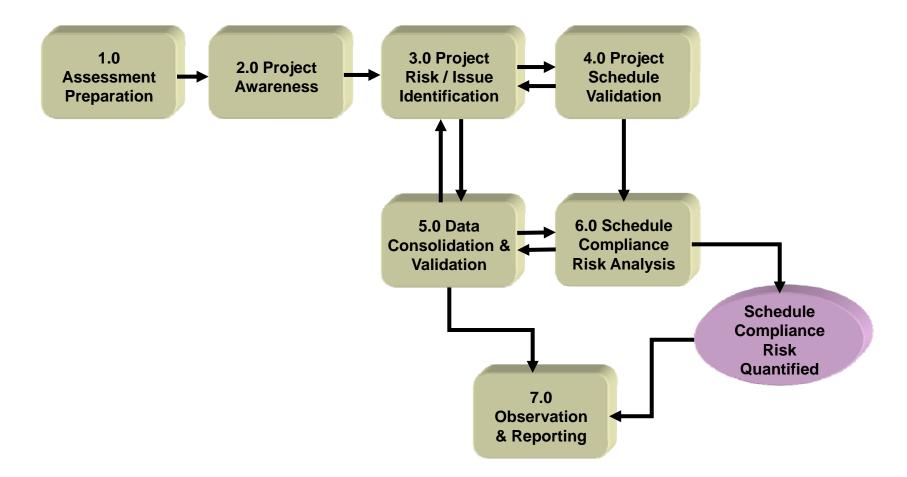
Non-advocate

- All significant issues and concerns are considered and reported regardless of origin or source (Customer and/or Contractor).
- Some SCRAM reviews have been joint contractor/customer team – facilitates joint commitment to resolve outcomes

SCRAM Key Principles (cont.)

- Non-attribution
 - Information obtained is not attributed to any individual
 - Focus is on identifying and mitigating the risk
- Corroboration of Evidence
 - □ Significant Findings and Observations based on at least two independent sources of corroboration
- Rapid turn-around
 - One to two weeks spent on-site
 - ☐ Executive briefing presented at end of second week

Topics


- Three Common Questions Addressed by SCRAM
- Benefits of Using SCRAM
- SCRAM Key Principles
- SCRAM Process
- Future plans for SCRAM

SCRAM Process

SCRAM Team Composition

- Assessment conducted by a small team including:
 - □ Engineering Assessors
 - Validate WBS, engineering-related basis of estimates (BoEs), work load estimates, technical risk assessment
 - Scheduler experienced in the project schedule tool
 - Validates schedule conducts schedule health checks
 - Performs Monte Carlo risk modelling
 - Other project domain specialists as needed
 - E.g. Aeronautical Flight Test Engineers

SCRAM Key Steps

- SCRAM Team briefs the Project on the principles, purpose and approach of the SCRAM
- The Project provides the SCRAM team with an initial overview of the current status and project issues
- Project Issues and Risks are confirmed by the SCRAM Team through interviews, reviewing documentation and other project assets
- Schedule health checks and Monte Carlo analysis are performed

SCRAM Key Steps (cont.)

- Executive out brief is prepared and presented
 - □ Observations, findings and recommendations
 - Presentation structured using the RCASS model
 - Shows cause and effect linkage
 - □ Findings allocated a risk code rating
 - □ Presented at the end of the second week
- The final report is prepared and delivered (an additional two weeks)

SCRAM Findings - Examples

- Sample Findings with Risk Code Rating
 - POSITIVE:
 - Functional requirements based-lined and agreed; no evidence was identified of requirements churn or creep
 - POTENTIAL RISK:
 - Limited schedule contingency exists for further rework
 - HIGH RISK:
 - Lack of an integrated high-level schedule precludes the ability to accurately forecast project milestone achievements
 - □ 13 major schedules not integrated at the program level

Process Reference / Assessment Model

- Developed as an ISO/IEC 15504 conformant Process
 Reference Model and Process Assessment Model
 - □ Funded by the Australian Defence Materiel Organisation (DMO)
 - Developed by
 - Systems and Software Quality Institute and Software Metrics Inc.
 - □ Delivered June 2010
 - □ The models are publicly available to download from:

http://www.scramsite.org

Topics

- Three Common Questions Addressed by SCRAM
- Benefits of Using SCRAM
- SCRAM Key Principles
- SCRAM Process
- Future plans for SCRAM

Future Plans

- Currently developed Diagnostic SCRAM (D-SCRAM)
 - □ Full scale application of the method to evaluate challenged projects or Projects of Concern.
 - □ Used to assess likelihood of schedule compliance, root cause of schedule slippage and to recommend remediation of project issues
- Further evolve the SCRAM process for:
 - □ Pro-active SCRAM (P-SCRAM)
 - To be conducted prior to Contract or at Integrated Baseline Review (IBR) to ensure common systemic issues are avoided before the Program Schedule is contracted or baselined
 - ☐ Monitor SCRAM (M-SCRAM)
 - Reduced version of D-SCRAM that maybe used to monitor project status – project health check performed ad hoc or conducted to support appropriate Gate Reviews

Future Plans (cont.)

- SCRAM Training & Assessor Qualifications
- SCRAM Process Reference and Assessment Model
 - □ Further revisions
 - Based on feedback from use during SCRAM assessments and
 - Change Requests (Appendix D in the model)
- SCRAM Assessment Tool
 - □ Prototype has been used
 - □ Under development

SCRAM

QUESTIONS

For further information contact:

Govt to Govt - Adrian Pitman: adrian.pitman@defence.gov.au

Australia - Angela Tuffley: a.tuffley@ssqi.org.au

USA - Betsy Clark: betsy@software-metrics.com

USA - Brad Clark: brad@software-metrics.com

Acronyms

- ANAO Australian National Audit Office
- BoE Basis of Estimate
- COTS/MOTS Commercial off the Shelf/Modified off the Shelf
- DMO Defence Materiel Organisation (Australia)
- GAO Government Accounting Office
- GFE Government Furnished Equipment
- ISO/IEC International Organization for Standardization/International Electrotechnical Commission
- ISO/IEC 15504 Information Technology Process Assessment
- RCASS Root Cause Analysis of Schedule Slippage
- SCRAM Schedule Compliance Risk Assessment Methodology
- SMI Software Metrics Inc. (United States)
- SSQi Systems & Software Quality Institute (Australia)

