MAKING A DIFFERENCE FOR4O

YEARS

At the Intersection of
Technical Debt and Software Maintenance Costs

Arlene Minkiewicz, Chief Scientist

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Agenda PRICE

= Introduction

= Why Debt?

= Technical Debt Definition and Categorizations
= Measuring Technical Debt

= Intersection of Technical Debt
and Software Maintenance

= Software Maintenance Cost Estimation
Considerations

= Conclusions and Future Work

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

PRICE.

mmm

“Shipping first time code is like going
into debt. A little debt speeds up
development, as long as it is paid back
promptly with a rewrite”

Ward Cunningham

C All Rights Reserved | Decades of Cost Management Excellence

Introduction PIRICE.

mm

= Technical debt is a metaphor used to ease understanding
between business leaders.

METIPhoRS

A comparison inh which one thing

is said to be another.
ﬁ Example:

Che is @ walking dictionary.

C All Rights Reserved | Decades of Cost Management Excellence

Introduction PRICE
T
= As a metaphor technical debt applies to the situation where
some short cut in process or standards is applied in order to
meet a short term goal such as:
— Forgoing standards to get to market faster

— Quick patches (violating best practices) to fix a bug in order to satisfy an
immediate customer demand

— Poorly documented code to accelerate development to meet a demanding
schedule
= As a metaphor it creates a situation allowing business leaders to
make good trade-off decisions based on what they expect to gain
versus what they will have to invest in future releases.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 5
Why Debt? LIRSS,
) 30
NG AR |

= Sometimes debt is wise and reasonable

= |f you want to start a business and have reasonable expectations
that it will be a success as you have planned it — it makes sense
to take on some debt to get it started
— As you make sales, you will have the means to pay both the principal and the
interest
= Similarly with software there are times when it makes sense to
skip a few steps to get to market or please a customer
— Conscious decision is made that the short term goal is worth the cost

— The principal is thought of as the amount of effort (story points, function points,
etc.) required to remove any violations created by the shortcut or deviation from

standards

g

— The interest is the increased cost created each time the debt ridden code is
touched

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Technical Debt for Software Pﬂl&f
= Forms of debt for a software application include the following
types of things:

Lack of documentation

Poor or missing comments

— Lack of adherence to best practices, process or standards

Missing tests or poor test coverage

Lack of modularization

— Architecture that is not well thought out or scalable
— Overly complex function, modules or classes

— Failure to keep up with technology

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Technical Debt Defined PIRICE.

= As a metaphor

— Technical debt facilitates discussions between
development teams and business leaders to support
sensible decisions about Return on Investment (ROI)

— Technical debt does not include the results of an
inexperienced junior developer writing bad code
because they don’t know any better. — This is just bad
code.

= As a metric applied to an application...

— Technical debt includes all violations of good coding
practices in a code base or application — regardless of e
whether they were consciously made

— Technical debt includes both debt assumed
consciously and that which results from sloth or
inexperience.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 8

Technical Debt Defined L"f’f
= Technical debt is not a measure of the defects in the code —
these represent the functional quality of code.

= Technical debt speaks to the structural quality of code.
— Many side effects of technical debt will not be observable to the user

— End users of systems with accumulating technical debt may see performance
degradation, decreases in updates and bug fixes, corrupted data, etc.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 9

Technical Debt Classification L’c'_f
= Fowler classifies technical debt in two dimensions — reckless or
prudent, deliberate or inadvertent [1]:

Reckless and inadvertent

Reckless and deliberate
Prudent and inadvertent [Reckless][Prudent]

Prudent and deliberate

)

“We must ship
“We don't haw now and deal
time to design” with the

consequences”

Deliberate

I

" “Now we know
“What'’s

Layering?’

Inadvertent

[

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Technical Debt Classification PRICE.

= Another way to classify
technical debt focuses on
how it is incurred [2]:

— Unavoidable debt — due to changes
in law or certification requirements
— generally unavoidable

— Strategic debt — usually incurred
proactively

— Tactical debt — no time to do it
right — reactive

— Incremental debt — lost of little il e ;

short cuts that add up L Unavoidabie
T straeze

— Naive debt — back to the bad code l/ | et

. . [~ incremental
mentioned earlier ™ Nawe

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 11

Measuring Technical Debt PRICE

m‘m

= There are several approaches an organization can employ:

— Organizations that embrace the metaphor have an excellent grip on the debt
intentionally incurred

— Some organizations use home grown or industry metrics as a proxy for technical
debt:
¢ Number of tests per size measure
* Code coverage
* Coupling or cohesion factors
¢ Cyclomatic complexity
e Comments per line of code
e Etc.

— Static analysis tools are available (both commercial and open source) that will
examine code looking for violations of standards and best practices based on
* software engineering standards
e Consortium for IT Software Quality (CISQ),
¢ Software Engineering Institute (SEI)
¢ Object Management Group (OMG)
* etc.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 12

Measuring Technical Debt

= According to Curtis et. al. [3],[4],[5] technical debt is assessed by
examining the following characteristics of the code:

— Robustness

* Stability and resilience of an application — how well it avoids outages and how quickly it can recover

from them

* Indications include poor memory management, uncontrolled data access, open resources not being

closed, etc.

— Performance efficiency
* Application speed and efficiency with which it consumes resource

 Indications include complex queries on big tables, large indices on large tables, etc.

— Security
* Application is able to prevent unauthorized intrusions and protect data
 Indications include buffer overflows, uncontrolled format strings, etc.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

PRICE.
40

surement

Measuring Technical Debt

— Transferability

¢ Ease with which new team can acclimate and understand the
application to become productive working with it

* Indications include lack of comments, misuse of inheritance, naming
convention violation, etc.
— Changeability
* Ease with which modification can occur without injection of new
defects

* Indications include lack of tests, high cyclomatic complexity,
duplicated code, etc.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Software Maintenance PIRICE.

mmm

“It doesn’t take a lot of skill
to get a program to work.
The skill comes in when you
have to keep it working”
Robert Martin

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Software Maintenance and Technical Debt PIRICE

= Software Maintenance is generally considered to be any change
made to an application after it has been released for production

= On average, 80% of maintenance activities go towards tasks
other than correcting bugs

= Software maintenance is typically categorized as follows:
— Corrective — fixing defects
— Perfective — adding new capabilities

— Preventive — addressing thing in the code that are not causing faults but tend to
make the code error prone and hard to maintain

— Adaptive — making the code continue to thrive as hardware and technology
progress
= According to the Guide to the Software Engineering Book of
Knowledge (SWEBOK Guide) 40-60% of most maintenance tasks
are devoted to understanding the code being maintained[6]

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Software maintenance and technical debt _Pﬂlﬁ_iﬁ

= Adaptive and Preventive maintenance seem to be focused
specifically on addressing the technical debt in an application

= An understanding of technical debt will drive maintenance ‘size’
associated with addressing that technical debt.

= Regardless of the types of maintenance being accomplished, all
software maintenance estimates should be informed by the
technical debt associated with transferability, changeability and
understandability.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 17

Software Maintenance and Technical Debt _Pﬂlf

= Some possible measures to indicate level of technical debt associated with
transferability and changeability:

— Software Size (SLOC, Function Points, etc.)

— Class Coupling

— Cyclomatic Complexity

— Halstead Volume

— Average Depth of Inheritance

— Average Size of Functions, Modules or Classes
— Average Number of Comments per size unit for Functions, Modules or Classes
— Number of tests per function, Module or Class

MI =171 -5.2In{aveV') ~0.BaveV (g')
— Maintainability Index ~16.2In(aveLOC) + 50sin | 2.46 perCM

= None of these measures has conclusively been determined to be a sole driver of
software maintenance costs

= There is evidence that some (or some combination of these measures) should be
included, along with other factors of the maintenance project, as part of an effort or
cost estimate for that project.

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 18

Software Maintenance Estimation Considerations PRICE

mmm

= Consider the activities that need to be completed for each of the
types of Software Maintenance:

Corrective
Code Understanding
Problem Identification and Analysis
Design

Implementation
Regression Testing
Acceptance Testing
Perfective
Code Understanding
Requirements Analysis
Design
Code and Unit Test
Software Integration and Test
Acceptance Testing
Preventive and Adaptive
Code Understanding/Reverse Engineering
Problem Identification and Analysis
Forward Engineering
Implementation
Regression Testing
Acceptance Testing

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 19

PIRICE

Software Maintenance Estimation Considerations

mm
= From an estimation perspective, corrective and perfective
maintenance should be handled very similarly to an estimate
of new development
— Size is determined based on the amount of functionality to be
added and the amount of functionality changed
— The only area where there are new influences are in the area
of maintainability and understanding
= The COCOMO Il Model — which has a
software maintenance effort model will
be used to demonstrate one approach where technical debt
measures may influence
. . . Corrective
maintenance estimates. This same . 4

methodology could be applied to any &
software maintenance model Koo Adaptive

Services

Preventive

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 20

10

Software Maintenance Estimation Considerations PRRICE

mmm

= The COCOMO Il model has a software maintenance effort model

= This model is very similar to the development model with the
following exceptions:

— Maintenance Size = Size * Maintenance Change Factor (MCF) * Maintenance
Adjustment Factor (MAF) where:

e MCF is a user input indicating how much functionality is being changed (Added Functions + Changed
Functions)/Total Functions

¢ MAF is 1 + (Software Understanding * Programmer Familiarity) where

— Software Understanding is a user input ranging from 10 to 50 to indicate how maintainable the software is (very
similar to the Maintainability Index mentioned above)

— Programmer Familiarity indicate how close the maintenance team is to the application being maintained

— RUSE (Design for Reuse) and SCED (Schedule Compression) are not considered
necessary for the maintenance effort

— RELY (Reliability) has the inverse impact on effort in maintenance than it does in
development

= Understanding and Familiarity are significant cost drivers

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 21
Software Maintenance Estimation Considerations M
mm

= |tis interest to note, the assumption is made
that even with the highest score for
maintainability an organization can expect to
deal with a 10% increase in ‘size’ to compensate
for learning the code to be maintained

= Further, there are cases where size adjustments
for understandability and familiarity might not
be the best approach

— While understandability and familiarity are very
important during requirements, design and code

they may be less important than other factors . '
such as number of automated tests or test
coverage during test related maintenance phases ’/%\ :\‘

= Certainly the measures that are available should
determine the best approach for adapting
maintenance effort calculations

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 22

11

Software Maintenance Estimation Considerations L’C@"E

mmm

= When estimating software maintenance for preventive or adaptive
maintenance, the issues are not as clear cut

= Clearly the issues of maintainability and understandability continue to apply.

= But size estimation is complicated by the fact that, as estimators, we tend to
think of software size as directly related to the functionality being delivered

= With adaptive and preventive maintenance, no new functionality is being
delivered.

= Estimators need to work with engineers for assistance in

— Understanding what technical debt will be addressed for a particular release

— How much of the software’s functionality will be
touched in this context

— What if any overlaps should be expected with
new/changed functionality in the release

— Their assessment of technical debt in the code =+
® |

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Conclusions and Further Work PRICE
mm
= Technical debt is used in the software industry in two distinct ways:
— As a metaphor to help business and development make wise trade-offs

— As a measure of the number of ‘violations’ in a code base or application

= Technical debt is not a measure of the defects in code, rather it is an
indicator of structural quality

= Technical debt information can be helpful in estimating software
maintenance costs in two ways:
— Indication of how understandable and maintainable existing software is
— Identification of areas where rework is necessary — facilitating discussion
between engineers and estimators to help ‘size’ that rework
= Data collection is on-going comparing code complexity
and maintainability metrics per software unit with the

effort spent maintaining that unit t{

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

12

MAKING A DIFFERENCE FOR

YEARS

Q&A SESSION

Arlene Minkiewicz

Chief Scientist
Arlene.Minkiewicz@PRICESystems.com

Arlene F. Minkiewicz

Chief Scientist

PRICE® Systems, LLC.

17000 Commerce Parkway — Suite A

Mt. Laurel, NJ 08054

Office 856-608-7222 Mobile 856-630-9408

2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

References PITICE.

mm

[1] Codabux, Z., Williams, B.,”Managing Technical Debt: An Industrial Case Study, 2013, International
Workshop on Managing Technical Debt, San Francisco, CA, May 2013, p8-15

[2] Ergin, L., “Technical Debt- Do not Underestimate the Danger”, available at
http://www.slideshare.net/lemiorhan/technical-debt-do-not-underestimate-the-danger (Retrieved
3/12/2015)

[3] Curtis,B., Sappidi, J., Szynkarski, A., “Estimating the Principal of an Application’s Technical Debt”,
IEEE Software, vol 29, no. 6, pp34-42, Dec 2012

[4] Curtis,B., Sappidi, J., Szynkarski, “Estimating the size, code and types of Technical Debt”, Third
International Workshop on Managing Technical Debt 2012, 2012

[5] Curtis, B, “Measuring and Managing Technical Debt”, available at
http://omg.org/news/meetings/tc/tx-14/special-events/cisg-presentations/CISQ-Seminar-2014-6-
17-BILL-CURTIS-Measuring-and-Managing-Technical-Debt.pdf, (Retrieved 3/12/2015)

[6] SWEBOK Version 3 and Guide to SWEBOK available at http://www.computer.org/web/swebok/v3

© 2013 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence 26

13

