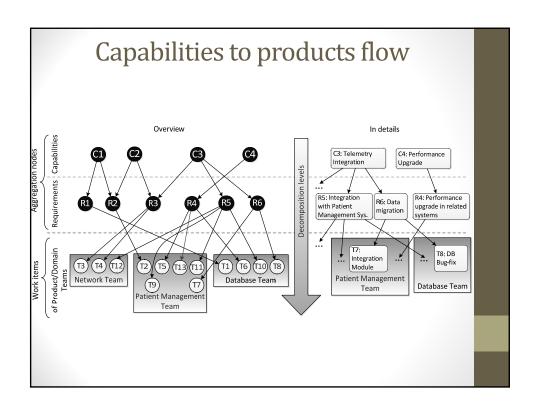
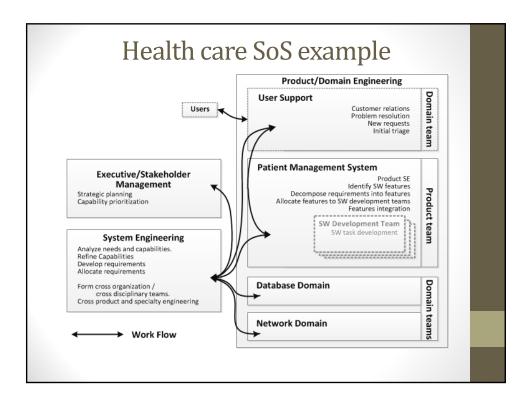

Simulation of Kanban-based scheduling for Systems of Systems

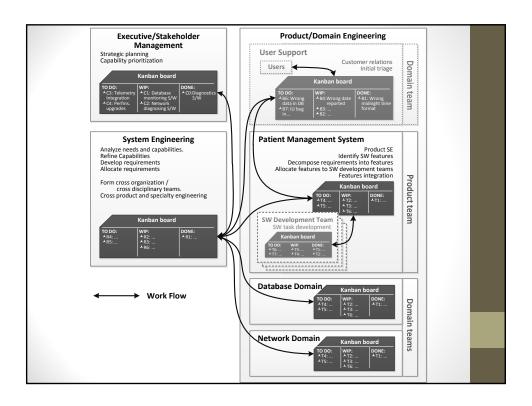

By Alexey Tregubov, Jo Ann Lane


University of Southern California Los Angeles, CA

Outline

- Part I. Kanban-based scheduling in SoS
 - SoS environments
 - KSS principles
- Part II. Simulation model
 - Organizational model
 - Governance model
 - Work items networks model
 - Inputs and outputs
- Part III. Experiments and simulation results

System of Systems' observed issues


- Ineffective communication between different organizational levels
- Lack of visibility (status of SoS capabilities)
- Inefficient use of engineering resources
- Time wasted on context switching (multitasking overhead)
- Valuable capabilities are not delivered first or incomplete capabilities delivered:
 - value delivery cadence is not satisfactory
 - stakeholders cannot effectively update priorities when values change

Key measures for Kanban research

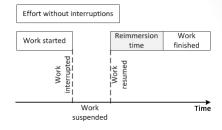
- Value delivered over time
- Schedule and effort
- Efficiency indicators/metrics:
 - Number of suspended/interrupted tasks
 - Number of disruptive tasks
 - E-factor = Uninterrupted hours / Hours present

Kanban-based scheduling process

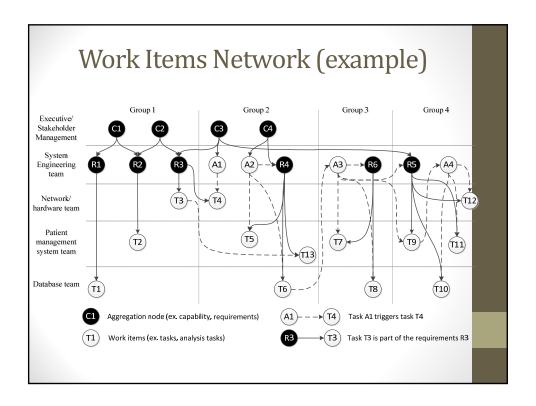
- Eliminate waste
 - Minimize context switching
 - · Limit work in progress
- Make process more visible, transparent, and quantifiable
 - Kanban boards
 - WIP status and obstacles
 - Value-based scheduling with respect to SoS capabilities
- Efficient/explicit value control
 - Value-based work prioritization
 - Stakeholders explicitly define value of SoS' capabilities
 - Value assigned and distributed explicitly

Part II

Simulation model


- Agent based model
- Three aspects of the model:
 - Organizational model structure of product and domain teams, SE team, stakeholders, etc.
 - Governance model defines agents' behavior:
 - scheduling algorithms
 - queues management
 - resource multitasking
 - WIs and resource outsourcing policies
 - WI network model all WI and their relationships, defines:
 - Work decomposition
 - Value flow

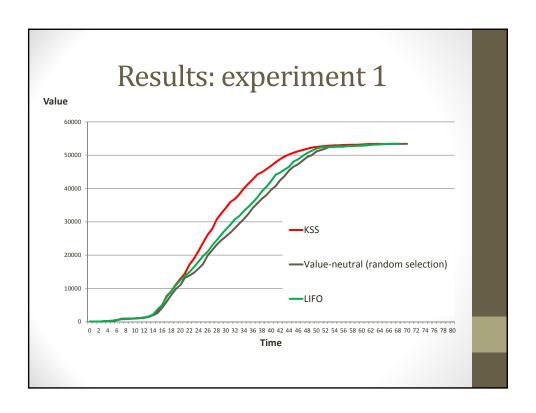
Inputs and outputs

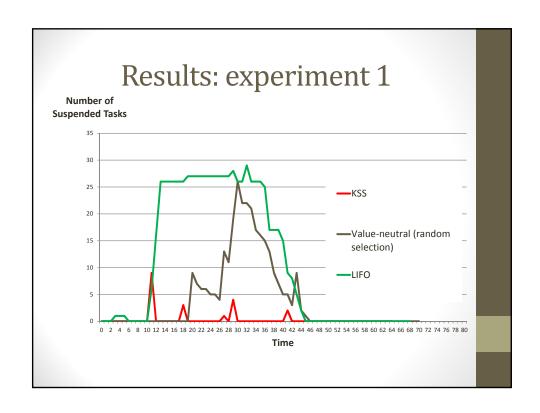

- Inputs:
 - Organizational structure
 - Governance model configuration
 - Event scenario events that describe how WIs originate and evolve in the simulation model.
- Outputs:
 - · Value delivered over time
 - Number of work items in progress
 - Number of fully complete & delivered capabilities over time
 - Inefficiently used effort (waste of effort):
 - Effort spent on context switching between tasks / multitasking

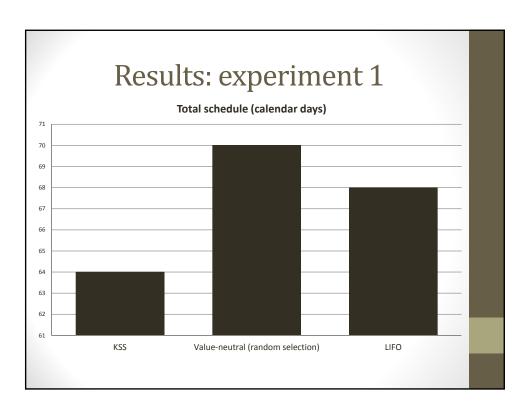
Modeling context switching

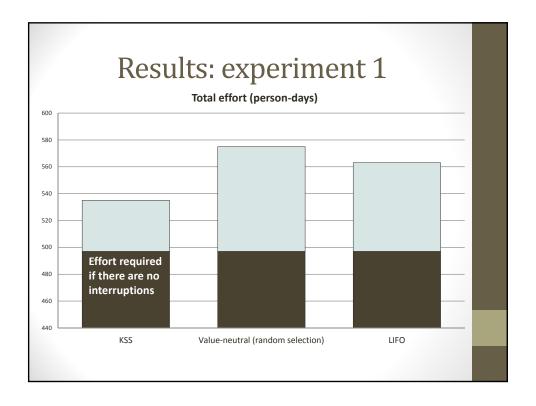
• Reimmersion time:

- Modeling the reimmersion time
 - Constant time: 1 hour/ 1 timeframe
 - Coming soon: variable reimmersion time based on
 - Task complexity
 - Assignment to another resource
 - · Length of suspension

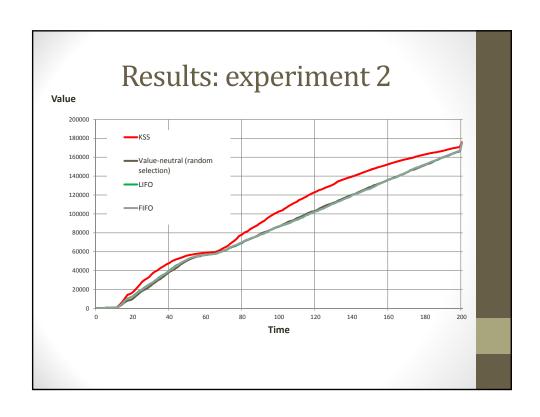

Part III

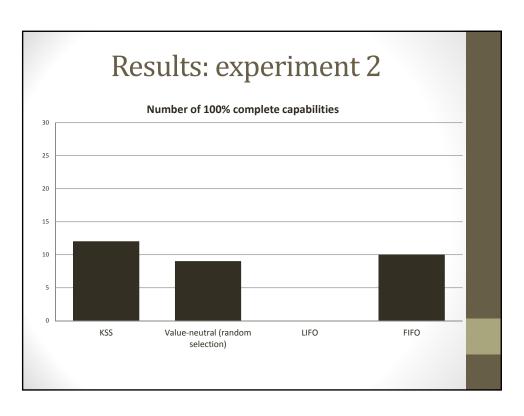

Experiments and results


- Experiment 1
 - · Scheduling algorithms: KSS, LIFO, value-neutral
 - Compares
 - value delivered over time
 - total schedule and effort
 - Suspended/interrupted work
- Experiment 2
 - Scheduling algorithms: KSS, LIFO, FIFO, value-neutral
 - Compares
 - value delivered over time
 - Capability completeness
- Experiment 3
 - KSS scheduling
 - Shows impact of multitasking and work interruptions

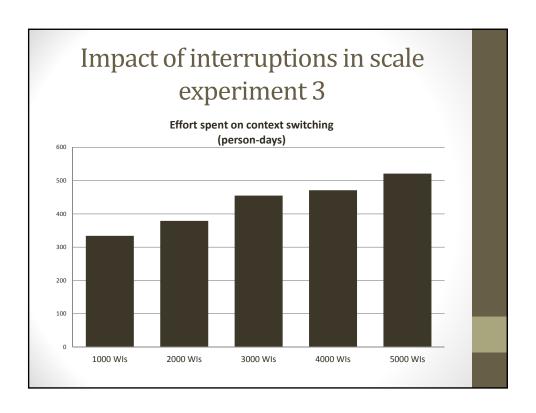

Experiment 1

- 10 constituent teams (20 members each)
 - + SoS system engineering team
- 20 new capabilities at start
- Each capability unfolds into 30 requirements on average
- Each requirement unfolds into 9 tasks on average
- Each tasks takes 3-15 days





Results: experiment 2


- 15 teams (12 members each) + system engineering team.
- 10 new capabilities at start
- 20 more capabilities added during the simulation
- Each capability unfolds into 30 requirements on average
- Each requirement unfolds into 10 tasks on average.
- Each tasks takes 3-15 days.
- There are 10 expedite tasks that cause blocked work (blocked tasks)
- Simulation time-frame: 1 hour
- Simulation length (fixed time simulation): 200 days/1600 hours.

Results: experiment 3

- We generated five groups of experiments with 100 experiments in each group. Each groups had a different number of WIs but the same organizational structure (5+1 teams). Each team had 15 resources.
- In the first group, we had 1000 WIs, in the second we had 2000 WIs, and so on.
- Nominal effort required for each WI was in interval 1-5 person-days.
- 100 disruptive WIs were introduced in the simulation.

Conclusion and future work

Impact of Kanban process with respect to key measures

Measure	
Value	More value delivered over time
Effort and schedule	 Save effort on unnecessary multitasking (in simulation it reduces effort spent on context switching by 40%) Improve capability delivery cadence
Efficiency	 Reduce unnecessary interruptions and multitasking Focus on completing capabilities (avoiding situations when everything is 90% complete and nothing delivered) Reduce number of suspended/interrupted tasks (in simulation it reduces number of suspended tasks by 2-3 times) Reduces the E-factor

Future work

Next steps:

- Pilot the Kanban scheduling with several organizations
- Fine-tune the simulation using empirical data and organizations' feedback

For additional information and piloting the KSS contact:

• Alexey Tregubov <u>tregubov@usc.edu</u>

Q&A

• Questions?

References

- Tregubov, A. and Lane, J.A., 2015. Simulation of Kanban-based Scheduling for Systems of Systems: Initial Results. Procedia Computer Science, 44, pp.224-233.
- DeMarco, T. and Lister, T., 2013. Peopleware: productive projects and teams. Addison-Wesley.
- Boehm, B. and Turner, R., 2003. Balancing Agility and Discipline: A Guide for the Perplexed, Portable Documents. Addison-Wesley Professional.
- Dzubak, C.M., 2008. Multitasking: The good, the bad, and the unknown. The Journal of the Association for the Tutoring Profession, 1(2), pp.1-12.
- Jett, Q.R. and George, J.M., 2003. Work interrupted: A closer look at the role of interruptions in organizational life. Academy of Management Review, 28(3), pp.494-507.

Contacts

- Alexey Tregubov:
 - tregubov@usc.edu
 - http://atregubov.com