The Criticality of Systems Maintainability and the Need for Software-Intensive System (SIS) System Maintainability Readiness Levels Barry Boehm, USC PSM Users' Group Keynote February 24, 2016 2/24/2016 ### **Outline** Maintainability shortfalls impact all aspects of system costeffectiveness - System life-cycle cost, dependability, changeability, mission effectiveness, resilience - Software maintainability lags hardware maintainability in cyber-physical-human systems - Systems increasingly software-intensive - Software maintenance differs from hardware logistics - Increasing costs of software maintenance and technical debt - Root causes of software-intensive systems (SIS) life cycle cost escalation - Addressing the root causes: SIS Maintenance Readiness Levels - Conclusions ### Problem and Opportunity (%O&M costs) - US Government IT: >73%; \$58 Billion [GAO 2015] - Cyber-Physical Systems [Redman 2008] - 12% -- Missiles (average) - 60% -- Ships (average) - 78% -- Aircraft (F-16) - 1960: 8% of functionality in software; 2000: 80% [Ferguson 2001] - 84% -- Ground vehicles (Bradley) - Software [Koskinen 2010] - 75-90% -- Business, Command-Control - 50-80% -- Complex platforms as above - 10-30% -- Simple embedded software - Primary current emphases minimize acquisition costs 2/24/2016 5 ### Software Technical Debt - Technical Debt: Delayed technical work or rework that is incurred when short-cuts are taken or short-term needs are given precedence over long-term needs - Global Information Technology Technical Debt [Gartner 2010] - 2010: Over \$500 Billion - By 2015: Over \$1 Trillion - Debt may be technical, but root causes are primarily due to foresight shortfalls in system and software processes and management 2/24/2016 ### **Outline** - Maintainability shortfalls impact all aspects of system costeffectiveness - System life-cycle cost, dependability, changeability, mission effectiveness, resilience - Increasing costs of software maintenance and technical debt - Software maintainability lags hardware maintainability in cyber-physical-human systems - Systems increasingly software-intensive - Software maintenance differs from hardware logistics - Root causes of software-intensive systems (SIS) life cycle cost escalation - Addressing the root causes: SIS Maintenance Readiness Levels - Conclusions 2/24/2016 #### Differences Between HW and SW Maintenance - Software components do not degrade due to wear and fatigue; - No imperfections or variations are introduced in making copies of software components; - 1 million actions to fix 1 million hardware items; only 1 for software - Motivates putting more functionality in software - Software interfaces are conceptual rather than physical; there is no easy-to-visualize three-prong plug and its mate; - There are many more distinct logic paths to check in software than in hardware; - The failure modes are generally different. Software failures generally come with no advance warning, provide no period of graceful degredation, and more often provide no announcement of their occurrence; - Repair of a hardware fault generally restores the system to its previous condition; repair of a software fault does not. #### Sources of Software O&M Cost Escalation - Software and Users evolve in Incompatible directions - Non-Developmental Items (COTS, Clouds, Open Source) - Independently evolving co-dependent external systems - Multi-mission sources of change - Breakage of brittle point-solution architectures - Priority changes: competition, technology, organizations - Maintainers are often ill-prepared - Minimal voice in acquisition - Missing deliverables: diagnostics, test support, architecture documentation, tool support, CM support - Diversity of deliverables from multiple sources - Unfamiliar domains, infrastructure - Missing capabilities: Rainy-day use cases 2/24/2016 9 ### **Outline** - Maintainability shortfalls impact all aspects of system costeffectiveness - System life-cycle cost, dependability, changeability, mission effectiveness, resilience - Increasing costs of software maintenance and technical debt - Software maintainability lags hardware maintainability in cyber-physical-human systems - Systems increasingly software-intensive - Software maintenance differs from hardware logistics - Root causes of software-intensive systems (SIS) life cycle cost escalation - Addressing the root causes: SIS Maintenance Readiness Levels - Conclusions 2/24/2016 #### Some Root Causes of O&M Cost Growth - Stovepipe acquisition of interoperating systems - Incompatible infrastructure, NDIs, user interfaces, ... - Acquisitions based on lowest-cost, technically-acceptable implementation of fixed requirements, resulting in - Brittle, point-solution architectures - CAIV-driven loss of information on post-delivery needs - Minimal interpretation of "technically acceptable" - Just implementing sunny-day requirements - Minimal maintainer participation, planning, preparation - Missing maintainer deliverables: diagnostics, test support, architecture documentation, tool support, CM support - Incompatibilities among post-deployment evolution parties - Inadequate SysE resources, leading to severe technical debt - First to be impacted by optimistic budgets and schedules 2/24/2016 .1 #### **Opportunities to Reduce Maintenance Costs** #### Many opportunities to reduce total ownership costs (TOC) - By emphasizing software Changeability and Dependability - Both rely on Maintainability via SERC System Qualities Ontology - Opportunities organized via Maintainability Opportunity Trees - Anticipate Modifiability Needs - Design, Develop for Modifiability - Anticipate Repairability Needs - Design, Develop for Repairability - Expedite Diagnosis - Improve Modification and Repair Verifiability; Skills ### **Elaborating Modifiability Benefits - I** - Evolution Information - Keep, prioritize below-the-line IOC desired capabilities - Use to determine modularization around sources of change, reduce ripple effects of changes - Trend Analysis - Identify, prioritize responses to sources of change - Marketplace, competition, usage trends, mobility trends - Use to refine, evolve architecture - Agile Methods, User Programmability - Enable rapid response to rapid change - Hotspot Analysis - Gather data on most common sources of change - Use to modularize architecture, reduce ripple effects of changes # SYSTEMS ENGINEERING Rework Sources Analysis: Projects A and B #### - Change processing over 1 person-month = 152 person-hours | Category | Project A | Project B | |---------------------------------|---------------------------|----------------------------| | Extra long messages | | 3404+626+443+328+244= 5045 | | Network failover | 2050+470+360+160= 3040 | | | Hardware-software interface | 620+200= 820 | 1629+513+289+232+166= 2832 | | Encryption algorithms | | 1247+368= 1615 | | Subcontractor interface | 1100+760+200= 2060 | | | GUI revision | 980+730+420+240+180 =2550 | | | Data compression algorithm | | 910 | | External applications interface | 770+330+200+160= 1460 | | | COTS upgrades | 540+380+190= 1110 | 741+302+221+197= 1461 | | Database restructure | 690+480+310+210+170= 1860 | | | Routing algorithms | | 494+198= 692 | | Diagnostic aids | 360 | 477+318+184= 979 | | TOTAL: | 13620 | 13531 | | 2/24/2016 | | 20 | # C4ISR Project C: Architecting for Change USAF/ESC-TRW CCPDS-R Project* When investments made in architecture, average time for change order becomes relatively stable over time... * Walker Royce, Software Project Management: A Unified Framework. Addison-Wesley, 1998. 2/24/2016 21 # Relative* Total Ownership Cost (TOC) For single system life cycle (TOC-SS) * Cumulative architecting and rework effort relative to initial development effort $_{2/24/2016}$ # Elaborating Modifiability Benefits – II #### and Repairability Benefits - Service-Oriented Architecture improves Interoperability - Product-Line Engineering improves Total Ownership Cost (TOC) - Identify, modularize around product line Commonalities - Develop domain architecture, interfaces to Variabilities - Fewer components to modify, repair - Improved Repairability improves Availability, TOC - Availability = MTBF / (MTBF + MTTR) - Stakeholder Value-Based V&V improves Cost, Mission Effectiveness - Prioritizing inspection, test activities - Balancing level of inspection, test activities vs. rapid fielding 2/24/2016 23 ### **Cost of Downtime Survey** - Industry Sector Revenue/Hour - Energy \$2.8 million - Telecommunications \$2.0 million - Manufacturing \$1.6 million - Financial Institutions \$1.4 million - Information Technology \$1.3 million - Insurance \$1.2 million - Retail \$1.1 million - Pharmaceuticals \$1.0 million - Banking \$996,000 - Source: IT Performance Engineering & Measurement Strategies: Quantifying Performance Loss, Meta Group, October 2000. ### **Addressing Potential Conflicts** - With Performance: Loose vs. tight coupling (supercomputing) - With Development Cost and Schedule: More to design, develop, V&V (rapid fielding) - With Usability: Too many options (Office 2010) - With Security: Too many entry points (Windows) - With Scalability, Safety, Security: Agile methods - With Dependability: User Programming, Self-Adaptiveness - With Interoperability: Multi-Domain Architectures - With Cost, Resource Consumption: Spare Capacity These are not always conflicts, but candidates to consider. Need to balance risk of too little Modifiability with risk of too much. 2/24/2016 ### **Outline** - Maintainability shortfalls impact all aspects of system costeffectiveness - System life-cycle cost, dependability, changeability, mission effectiveness, resilience - Increasing costs of software maintenance and technical debt - Software maintainability lags hardware maintainability in cyber-physical-human systems - Systems increasingly software-intensive - Software maintenance differs from hardware logistics - Root causes of software-intensive systems (SIS) life cycle cost escalation - Addressing the root causes: SIS Maintenance Readiness Levels - Conclusions | | Software-Intensive Systems Maintainability Readiness Levels | | | | | |--------------|--|--|--|--|--| | SMR
Level | OpCon, Contracting: Missions, Scenarios, Resources, Incentives | Personnel Capabilities and Participation | Enabling Methods, Processes, and Tools (MPTs) | | | | 9 | 5 years of successful maintenance operations, including
outcome-based incentives, adaptation to new technologies,
missions, and stakeholders | In addition, creating incentives for continuing effective
maintainability.
performance on long-duration projects | Evidence of improvements in innovative O&M MPTs based on ongoing O&M experience | | | | 8 | One year of successful maintenance operations, including outcome-based incentives, refinements of OpCon. | Stimulating and applying People CMM Level 5 maintainability practices in continuous improvement and innovation in such technology areas as smart systems, use of multicore processors, and 3-D printing | Evidence of MPT improvements based on ongoing refinement, and extensions of ongoing evaluation, initial O&M MPTs. | | | | 7 | System passes Maintainability
Readiness Review with evidence of viable OpCon, Contracting,
Logistics, Resources,
Incentives, personnel capabilities, enabling MPTs | Achieving advanced People CMM Level 4
maintainability capabilities such as empowered work
groups, mentoring, quantitative performance management
and competency-based assets, particularly across key
domains. | Advanced, integrated, tested, and exercised full-LC
MBS&SE MPTs and Maintainability-other-SQ
tradespace analysis | | | | 6 | Mostly-elaborated maintainability OpCon. with roles, responsibilities, workflows, logistics management plans with budgets, schedules, resources, staffing, infrastructure and enabling MPT choices, V&V and review procedures. | Achieving basic People CMM levels 2 and 3
maintainability practices such as maintainability work
environment, competency and career development, and
performance management especially in such key areas
such as V&V, identification & reduction of technical
debt. | Advanced, integrated, tested full-LC Model-Based Software & Systems (MBS&SE) MPTs and Maintainability-other-SQ tradespace analysis tools identified for use, and being individually used and integrated. | | | | 5 | Convergence, involvement of main maintainability success-
critical stakeholders. Some maintainability use cases defined.
Rough maintainability OpCon, other success-critical
stakeholders, staffing, resource estimates. Preparation for NDI
and outsource selections. | In addition, independent maintainability experts
participate in project evidence-based decision reviews,
identify potential maintainability conflicts with other SQs | Advanced full-lifecycle (full-LC) O&M MPTs and SW/SE MPTs identified for use. Basic MPTs for tradespace analysis among maintainability & other SQs including TCO being used. | | | | 4 | Artifacts focused on missions. Primary maintenance options
determined, Early involvement of maintainability success-
critical stakeholders in elaborating and evaluating maintenance
options. | Critical mass of maintainability SysEs with mission SysE
capability, coverage of full M-SysE.skills areas,
representation of maintainability success-critical-
stakeholder organizations. | Advanced O&M MPT capabilities identified for use:
Model-Based SW/SE, TCO analysis support. Basic
O&M MPT capabilities for modification, repair and
V&V: some initial use. | | | | 3 | Elaboration of mission OpCon, Arch views, lifecycle cost
estimation. Key mission, O&M, success-critical stakeholders
(SCSHs) identified, some maintainability options explored. | O&M success-critical stakeholders's provide critical mass
of maintainability-capable Sys. engrs. Identification of
additional. M-critical success-critical stakeholders. | Basic O&M MPT capabilities identified for use,
particularly for OpCon, Arch, and Total cost of
ownership (TCO) analysis: some initial use. | | | | 2 | Mission evolution directions and maintainability implications
explored. Some mission use cases defined, some O&M options
explored. | Highly maintainability-capable SysEs included in Early SysE team. | Initial exploration of O&M MPT options | | | | 1 | Focus on mission opportunities, needs. Maintainability not yet considered | Awareness of needs for early expertise for
maintainability. concurrent engr'g, O&M integration, Life
Cycle cost estimation | Focus on O&M MPT options considered | | | | SYSTEMS ENGINEERING
Research Center | |--| # SIS Maintainability Readiness Levels 1-3 | SMR
Level | OpCon, Contracting: Missions,
Scenarios, Resources, Incentives | Personnel Capabilities and
Participation | Enabling Methods, Processes, and
Tools (MPTs) | |--------------|--|---|--| | Level | , , | <u> </u> | 100is (IVIF 18) | | 3 | Elaboration of mission OpCon,
Arch views, lifecycle cost
estimation. Key mission, O&M,
success-critical stakeholders
(SCSHs) identified, some
maintainability options explored. | O&M success-critical
stakeholders's provide critical mass
of maintainability-capable Sys.
engrs. Identification of additional.
M-critical success-critical
stakeholders. | Basic O&M MPT capabilities
identified for use, particularly for
OpCon, Arch, and Total cost of
ownership (TCO) analysis: some
initial use. | | 2 | Mission evolution directions and
maintainability implications
explored. Some mission use cases
defined, some O&M options
explored. | Highly maintainability-capable
SysEs included in Early SysE team. | Initial exploration of O&M MPT options | | 1 | Focus on mission opportunities,
needs. Maintainability not yet
considered | Awareness of needs for early expertise for maintainability. concurrent engr'g, O&M integration, Life Cycle cost estimation | Focus on O&M MPT options considered | ### SIS Maintainability Readiness Levels 3-5 | Software-Intensive Systems Maintainability Readiness Levels | | | | | |---|---|---|---|--| | SMR
Level | OpCon, Contracting: Missions,
Scenarios, Resources, Incentives | Personnel Capabilities and
Participation | Enabling Methods, Processes, and Tools (MPTs) | | | 5 | Convergence, involvement of main maintainability success-critical stakeholders. Some maintainability use cases defined. Rough maintainability OpCon, other success-critical stakeholders, staffing, resource estimates. Preparation for NDI and outsource selections. | In addition, independent maintainability
experts participate in project evidence-
based decision reviews, identify potential
maintainability conflicts with other SQs | Advanced full-lifecycle (full-LC) O&M
MPTs and SW/SE MPTs identified for
use. Basic MPTs for tradespace analysic
among maintainability & other SQs,
including TCO being used. | | | 4 | Artifacts focused on missions. Primary
maintenance options determined, Early
involvement of maintainability success-
critical stakeholders in elaborating and
evaluating maintenance options. | Critical mass of maintainability SysEs
with mission SysE capability, coverage of
full M-SysE.skills areas, representation
of maintainability success-critical-
stakeholder organizations. | Advanced O&M MPT capabilities identified for use: Model-Based SW/SE TCO analysis support. Basic O&M MPT capabilities for modification, repair and V&V: some initial use. | | | 3 | Elaboration of mission OpCon, Arch
views, lifecycle cost estimation. Key
mission, O&M, success-critical
stakeholders (SCSHs) identified, some
maintainability options explored. | O&M success-critical stakeholders's
provide critical mass of maintainability-
capable Sys. engrs. Identification of
additional. M-critical success-critical
stakeholders. | Basic O&M MPT capabilities identifier
for use, particularly for OpCon, Arch,
and Total cost of ownership (TCO)
analysis: some initial use. | | ## SIS Maintainability Readiness Levels 5-7 | Software-Intensive Systems Maintainability Readiness Levels | | | | | | |---|---|--|--|--|--| | SMR
Level | OpCon, Contracting: Missions,
Scenarios, Resources, Incentives | Personnel Capabilities and
Participation | Enabling Methods, Processes, and
Tools (MPTs) | | | | 7 | System passes Maintainability Readiness Review with evidence of viable OpCon, Contracting, Logistics, Resources, Incentives, personnel capabilities, enabling MPTs | Achieving advanced People CMM Level
4 maintainability capabilities such as
empowered work groups, mentoring,
quantitative performance management
and competency-based assets,
particularly across key domains. | Advanced, integrated, tested, and
exercised full-LC MBS&SE MPTs and
Maintainability-other-SQ tradespace
analysis | | | | 6 | Mostly-elaborated maintainability OpCon. with roles, responsibilities, workflows, logistics management plans with budgets, schedules, resources, staffing, infrastructure and enabling MPT choices, V&V and review procedures. | Achieving basic People CMM levels 2
and 3 maintainability practices such as
maintainability work environment,
competency and career development, and
performance management especially in
such key areas such as V&V,
identification & reduction of technical
debt. | Advanced, integrated, tested full-LC
Model-Based Software & Systems
(MBS&SE) MPTs and Maintainability-
other-SQ tradespace analysis tools
identified for use, and being
individually used and integrated. | | | | 5 | Convergence, involvement of main maintainability success-critical stakeholders. Some maintainability use cases defined. Rough maintainability OpCon, other success-critical stakeholders, staffing, resource estimates. Preparation for NDI and outsource selections. | In addition, independent maintainability experts participate in project evidence-based decision reviews, identify potential maintainability conflicts with other SQs | Advanced full-lifecycle (full-LC) O&M
MPTs and SW/SE MPTs identified for
use. Basic MPTs for tradespace analysis
among maintainability & other SQs,
including TCO being used. | | | ### SIS Maintainability Readiness Levels 7-9 | SMR
Level | 0.0.0.4.4.35.1 | | | |--------------|--|--|--| | Level | OpCon, Contracting: Missions,
Scenarios, Resources, Incentives | Personnel Capabilities and
Participation | Enabling Methods, Processes, and
Tools (MPTs) | | 9 | 5 years of successful maintenance
operations, including outcome-based
incentives, adaptation to new
technologies, missions, and stakeholders | In addition, creating incentives for
continuing effective maintainability.
performance on long-duration projects | Evidence of improvements in innovative
O&M MPTs
based on ongoing O&M experience | | 8 | One year of successful maintenance operations, including outcome-based incentives, refinements of OpCon. | Stimulating and applying People CMM
Level 5 maintainability practices in
continuous improvement and innovation
in such technology areas as smart
systems, use of multicore processors, and
3-D printing | Evidence of MPT improvements based
on ongoing refinement, and extensions
of ongoing evaluation, initial O&M
MPTs. | | 7 | System passes Maintainability Readiness Review with evidence of viable OpCon, Contracting, Logistics, Resources, Incentives, personnel capabilities, enabling MPTs | Achieving advanced People CMM Level 4 maintainability capabilities such as empowered work groups, mentoring, quantitative performance management and competency-based assets, particularly across key domains. | Advanced, integrated, tested, and
exercised full-LC MBS&SE MPTs and
Maintainability-other-SQ tradespace
analysis | # SMRL Usage vs. Complexity, Criticality, Continuity | SMRL Level
Vs. DoD
Milestone | Simple, Non-
Critical, Organic | Simple, Non-
Critical,
Transitioned | Intermediate | Highly Complex,
Critical | |------------------------------------|-----------------------------------|---|--------------|-----------------------------| | MDD | 1 | 1 | 2-3 | 3 | | MS A | 2 | 3 | 4-5 | 5 | | MS B | 3 | 4 | 6 | 6 | | IOC | 5 | 6 | 7 | 7 | #### **Conclusions** - Maintainability shortfalls impact all aspects of system costeffectiveness - System life-cycle cost, dependability, changeability, mission effectiveness, resilience - Increasing costs of software maintenance and technical debt - Software maintainability lags hardware maintainability in cyber-physical-human systems - Systems increasingly software-intensive - Software maintenance differs from hardware logistics - Root causes explain sources of software-intensive systems (SIS) life cycle cost escalation - SIS Maintenance Readiness Levels framework enables projects to confront and overcome the root causes