
 COCOMO III Drivers

In order to be compatible with COSYSMO, the COCOMO III Architecture and Risk Resolution (RESL)
driver has been split into two new drivers: Risk/Opportunity Resolution and Software Architecture
Understanding. The Risk/Opportunity Resolution driver is taken from COSYSMO. The Software
Architecture Understanding drive is new.

Risk/Opportunity Resolution

Definition

This driver captures the software project’s use of a comprehensive, effective risk/opportunity
management process, culture, and the amount of risk on the current project.

Rating Scale and Values

Characteristic
Very
Low Low Nominal High Very High Extra High

A life cycle-
long, funded
process for
identifying,

tracking, and
resolving

software risks
and

opportunities
is carried out.

No such
process,

or the
process
is very
weak.

The
process
is weak.

The process is
moderate.

The process
is fairly
strong.

The process
is strong.

The process
is very strong.

A culture of
software risk

and
opportunity

identification,
tracking, and
resolution is
part of the

organization.

Very
weak

culture.

Weak
culture.

Moderate
culture,

including
experience in

SW
risk/opportunity
management.

Fairly strong
culture,

including
fairly

successful
experience in

SW risk/
opportunity

management.

Strong
culture,

including
mostly

successful
experience in

SW risk/
opportunity

management.

Very strong
culture,

including very
successful

experience in
SW risk/

opportunity
management.

Number and
criticality* of
software risk

items.

> 10
SW

Critical

5-10
SW

Critical
2-4 SW Critical 1 SW Critical

> 5 SW Non-
Critical

< 5 SW Non-
Critical

Rating
Values

TBD TBD TBD TBD TBD TBD

* A critical risk negatively relates to the likelihood of a successful outcome of a project. A critical risk is
defined as having a highly negative impact on the project’s cost, schedule, or missing promised
capability. There are many software development risks that could be considered: inadequate planning,
complex project, unrealistic schedule, incomplete requirements, dysfunctional organization environment,
dysfunctional team environment, lack of staffing, high staff turnover, lack of application experience, lack
of or not following software development processes.

 COCOMO III Drivers

Software Architecture Understanding

Definition

This cost driver rates the degree of understanding of determining and managing the system architecture in
terms of platforms, standards, new and NDI (COTS/GOTS) components, connectors (protocols), and
constraints. This includes tasks like systems analysis, tradeoff analysis, modeling, simulation, case
studies, etc.

Rating Scale and Values

Characteristic Very low Low Nominal High Very High

Degree of
Understanding*

Poor
understanding

of software
architecture
and NDI, no

documentation

Minimal
understanding
of architecture
and NDI, high-

level
architectural

view

Reasonable
understanding
of architecture

and NDI,
some

architectural
views

expressed,
e.g. physical &
logical views

Strong
understanding
of architecture
and NDI, most
architectural

view
expressed

Full
understanding
of architecture,
familiar system
and NDI, fully
documented

and maintained
architectural

views

Percent of
required top

software
architects

available to
project

20% 40% 60% 80% 100%

Rating Values TBD TBD TBD TBD TBD

The degree of architectural understanding depends in part on the 4+1 view model described in
Architectural Blueprints – The “4+1” View Model of Software Architecture1 or an equivalent set of
architectural descriptions. The four views are:

 Development view (also known as the implementation view) uses the UML Component diagram
to describe system components.

 Logical view is concerned with functionality and includes class diagrams and state diagrams.
 Physical view (also known as the deployment view) is concerned with the topology of software

components on the physical layer as well as the physical connections between these components.
 Process view deals with the dynamic aspects of the system explaining system processes and how

they communicate. It focuses on the runtime behavior of the system. The process view addresses
concurrency, distribution, integrators, performance, and scalability, etc.

The +1 addresses scenarios.

 Scenarios describe sequences of interactions between objects and between processes. They are
used to identify architectural elements and to illustrate and validate the architecture design. They
also serve as a starting point for tests of an architecture prototype.

1 Kruchten, Philippe (1995, November). Architectural Blueprints — The “4+1” View Model of Software
Architecture. IEEE Software 12 (6), pp. 42-50.

 COCOMO III Drivers

Background

Architecture and Risk Resolution (RESL)

This driver captures the proactive measures that the software project or team takes to mitigate risk and
explore opportunities during the course of system development and project execution. The use of software
architects and the establishment of scalable and flexible software architecture is seen as a major
influencer in risk resolution. RESL is based on seven characteristics:

RESL
Very
Low Low Nominal High Very High Extra High

Risk Mgt Plan None Little Some Generally Mostly Fully
RMP Consistency None Little Some Generally Mostly Fully
Establishing
Architecture

5% 10% 15% 20% 25% 30%

Top Architects 20% 40% 60% 80% 100%
120% (more
than needed)

Risk Resolution
Support

None Little Some Good Strong Full

Level of Uncertainty Extreme
Signifi-
cant

Consider
-able

Some Little Very Little

Num of Critical
Risks

> 10
Critical

5-10
Critical

2-4
Critical

1 Critical > 5Non-Critical < 5 Non-Critical

How do these characteristics affect effort?

Discussion

1. Risk Management Plan identifies all critical risk items, establishes milestones for resolving them
by early in the lifecycle, e.g., preliminary design review (PDR) or life cycle architecture (LCA).

2. Schedule, budget, and internal milestones through PDR or LCA compatible with Risk
Management Plan and process.

3. Percent of development effort devoted to establishing architecture, given general product
objectives.

4. Percent of required top software architects available to project.
5. Tool support available for resolving risk items, developing and verifying architectural specs.
6. Level of uncertainty in key architecture drivers derived from requirements, e.g., mission, user

interface, non-developmental items (e.g. COTS), hardware, technology, and performance.
7. Number and criticality of risk items.

