
UNCLASSIFIED

UNCLASSIFIED

Co‐Chairs:
The Honorable William LaPlante
Dr. Robert Wisnieff

Findings and Recommendations

UNCLASSIFIED

UNCLASSIFIED 2

Terms of Reference

 The DoD and defense industrial base need to capitalize on the opportunities provided
by commercial sector improvements in software development techniques and
practices. Therefore, the Task Force should:
 Examine the current state of DoD software acquisition and recommend actions for

DoD and its suppliers
 Consider development, test, and evaluation of learning systems
 Contrast and compare DoD and commercial software development and determine

what commercial software development capabilities the military systems should
embrace

 Identify impediments in DoD requirements, contracting, and program management
and how they might be removed

 Determine if “agile” software techniques are being used effectively and identify
impediments

 Determine if the commercial concept of a minimum viable product should be
adopted by DoD

 Determine best management approaches to achieve rapid and effective software
upgrades, including an analysis of modular, open architecture

 Look at lessons learned from recent software challenges (OCX, F-35)
 Provide recommendations to ensure rapid adoption of cognitive capabilities as they

mature

UNCLASSIFIED

UNCLASSIFIED 3

Task Force

 Chairs:
 Dr. Bill LaPlante
 Dr. Bob Wisnieff

 Executive Secretary:
 Mr. Jim Thompson

 Advisors:
 Mr. Joe Heil, Navy
 Ms. Cindy Schurr, Air Force

 Task Force Members:
 Dr. Victoria Coleman
 Mr. Chris Lynch
 Dr. John Manferdelli
 Dr. Joe Markowitz
 Mr. Bob Nesbit
 Dr. Paul Nielsen
 Mr. Mark Russell
 Dr. Fred Schneider
 Mr. Lou Von Thaer
 Mr. Alfonso Velosa

UNCLASSIFIED

UNCLASSIFIED 4

Briefings

 OCX GPS Program Office
 Joint Fighter F-35 Program Office
 CAPE (cost estimation)
 Defense Procurement and Acquisition

Policy (incentives)
 Pierre Chao (software sustainment)
 Dick Ginman (Intellectual Property)
 USAF Rapid Capabilities Office (open

architecture)
 USAF Expeditionary Combat Support

System (ECSS)
 U.S. Army RDECOM (FACE program)
 House Armed Services Committee
 AT&L/C3, Cyber, and Business Systems

(C3CB)

 Intel Software Day
 OUSD/AT&L/SSI, ODNI/SRA,

NRO, NGA, NSA
 San Jose Fieldtrip

 Google, IBM, Facebook, Kaggle,
Brave Software, Qualcomm

 Defense Digital Services (DDS)
 18F
 Code for America
 Carnegie Mellon University

(deep/machine learning)
 Raytheon
 Lockheed Martin
 Boeing
 SpaceX

UNCLASSIFIED

UNCLASSIFIED 5

Importance of Software in Defense Systems

 Software is a crucial and growing part of weapon systems/national
security mission
 “The DoD is experiencing an explosive increase in its demand for

software-implemented features in weapon systems...in the
meantime, defense software productivity and industrial base
capacity have not been growing as quickly.”
–Institute for Defense Analyses, 2017

 Software never dies. It will require DoD to update continuously and
indefinitely

UNCLASSIFIED

UNCLASSIFIED

135 236 1,000
1,700

6,800 8,000

9,200

20,300

 ‐
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000
 16,000
 18,000
 20,000
 22,000
 24,000
 26,000
 28,000
 30,000
 32,000

F‐16A Block 1
(1974)

F‐16D Block 60
(1984)

P‐3C
(1996)

F‐22 Raptor
(1997)

F‐35 Lightning II
(2006)

F‐35 Lightning II
Block 2B

(2016 AF IOC)

F‐35 Lightning II
Block 3F est.

(2017)

SL
O
C
 in

 t
h
o
u
sa
n
d
s

DoD Software Growth

 DoD Software complexity and size rapidly growing
Explosive growth of Source lines of code (SLOC) in Avionics Software

Airborne Software

Airborne + Support
Software

Note: SLOC for F‐35 Block 2B, 3F and Support SW, KC‐46 Source: 2017 DASD (SE)
SLOC for F‐16 and F‐22 are at first operation flight Source: “Software‐ The Brains Behind US Defense Systems”, AT Kearney, “A historical compilation of software metrics with applicability to NASA’s Orion
spacecraft flight software sizing”, Judas, Paul A, and Prokop, Lorraine E., Innovations in Systems and Software Engineering: A NASA Journal, DOI 10.1007/s11334‐011‐0142‐7, 2011 NASA

6

UNCLASSIFIED

UNCLASSIFIED

Li
ke
lih

oo
d

Consequence

Software not in top program risks

FY14 ‐ FY16

Software assessed among most frequent and most critical challenges,
driving program risk on ~ 60% of acquisition programs

Software Risk Assessed by
DoD Program Offices

7

UNCLASSIFIED

UNCLASSIFIED

8

DoD vs. Commercial Software Process

Release the
product to users

DoD Software Process (Waterfall)
[Focus on end product]

Requirements RFP Release

Document
requirements, plan,
schedule, cost

1 St
ar
t

Co
m
pl
et
e

Milestone B Award Milestone C
(5–7 years)

Preliminary design
review of system
design

2 St
ar
t

Co
m
pl
et
e Write the software,

measure progress
using SLOC

3 St
ar
t

Co
m
pl
et
e User acceptance

testing: measure
defects found/solved

4 St
ar
t

Co
m
pl
et
e

Commercial Software Process (Continuous Iterative Development)

Create ranked feature list,
system architecture1

Set goals of 1st sprint to
implement top features2

Set goals for
next sprint6

[Focus on series of MVPs]

Continuous
Development

Process
(~6 week loop)

Nightly Build

Release MVP
to users

Coding: team dynamically adjusts
goals based on daily build/test &
weekly evaluations

3

Revise code based on peer review and
test findings. (Engage users in this
process if possible.)

4

Develop parts of minimum
viable product (MVP) that
can be tested with users

5

UNCLASSIFIED

UNCLASSIFIED

Automated
Build

Fuzz Testing

9

Software Factory

Developers
Source Repository Dynamic TestAutomated Test

(unit, static)

Documentation

Package

Deploy

Project Management

Beta Users

Users

UNCLASSIFIED

UNCLASSIFIED

Automated
Build

Fuzz Testing

10

Addressing Cyber

Developers
Source Repository Dynamic TestAutomated Test

(unit, static)

Documentation

Package

Deploy

Project Management

Beta Users

Users

Coding style checks,
static analysis

(meet NIST guidelines):
daily

Check for dynamic faults
in variables and logic:

weekly

Check error caused
by inputs:
monthly

Cyber Red Team

UNCLASSIFIED

UNCLASSIFIED 11

Importance of Architecture

 DoD systems are complex
 This means software architecture is difficult to communicate

effectively
 This can lead to incomplete specification that interferes with

coherent implementation
 This makes it difficult to do efficient parallel development.

 Special emphasis must be made early in a program to develop a
clear and complete and easily communicated software
architecture that can be used by large implementation teams

UNCLASSIFIED

UNCLASSIFIED 12

Introduction

 Commercial development best practices (as done in Silicon Valley) allow software
production rapidly — and continuously — and can adjust more efficiently

 New tools and techniques being utilized (automation at scale)
 Computing power has increased and cost has fallen
 Static, dynamic, and fuzz testing techniques have allowed substantial, automatic software testing
 Open source appears prevalent and growing
 Continuous — in development and testing (billions of hours of usage of its software every day)

 It is the Task Force’s assessment that DoD is significantly behind the commercial sector
(though bright spots exist)

 DoD can leverage the development best practices to its advantage, including on its
weapons systems. This will enable DoD to move from a capabilities-based to a threat-based
acquisition — increasing speed to respond

 Adversaries are increasingly able to present us with capabilities we have not anticipated

 However, defense contractor base is not at the same state of adoption of commercial
development best practices

 DoD needs to change internal practices and encourage/incentivize practices in contractor base
 DoD develops software and associated contracting based on detailed systems requirements/

specifications (this approach was heavily utilized 20 years ago — systems engineering flowdown)

UNCLASSIFIED

UNCLASSIFIED

13

FINDINGS
Continuous Iterative Development For DoD

UNCLASSIFIED

UNCLASSIFIED

14

Silicon Valley Baedeker:
Theories of Software Development

How did we get here?
Shift from Waterfall to Agile, from Silos to Collaboration

Requirements

BA

Dev

Dev

Test

QA

Ops
Staging &
ProductionW

at
er
fa
ll

Business Analysis
Ops

Staging &
Production

Ag
ile Development

Quality Assurance

Req + Dev + Test

Iterations 1 2 3 4 5

Ag
ile
 D
ev
O
ps Req + Dev + Test + Ops

Co
nt
in
uo

us
Ev
er
yt
hi
ng

</>

</>

</>

Source: Hewlett Packard Enterprise, FedInsider, Intel

UNCLASSIFIED

UNCLASSIFIED

Iterative Development: Agile, Spins and Spirals

 Iterative development is the ineluctable process imposed by use
of a product — especially a software product — which reveals a
shortcoming or suggests a new improvement
 What distinguishes traditional iterative development from newer

software design and development is the velocity and granularity of
the iterations
 In venerable software production methodology (waterfall

development) the iterations are commonly at the end-product
level after field deployment and use
 Newer constructs — agile/spiral/spin — are able to uncover and

deal with flaws and opportunities sufficiently early in the process,
efficiently leading more robust product delivered to the field

15

UNCLASSIFIED

UNCLASSIFIED

Harvard Business Review: Embracing Agile

Conditions Favorable Unfavorable

Market environment  Customer preferences and solution options
change frequently.

 Market conditions are stable and
predictable.

Customer Involvement  Close collaboration and rapid feedback are
feasible.

 Customers know better what they want as
the process progresses.

 Requirements are clear at the outset and
will remain stable.

 Customers are unavailable for constant
collaboration.

Innovation Type  Problems are complex, solutions are
unknown, and the scope isn’t clearly
defined.

 Product specifications may change.
 Creative breakthroughs and time to market

are important.
 Cross‐functional collaboration is vital.

 Similar work has been done before, and
innovators believe the solutions are clear.

 Detailed specifications and work plans can
be forecast with confidence and should be
adhered to.

 Problems can be solved sequentially in
functional silos.

Modularity of Work  Incremental developments have value, and
customers can use them.

 Work can be broken into parts and
conducted in rapid, iterative cycles.

 Late changes are manageable.

 Customers cannot start testing parts of the
product until everything is complete.

 Late changes are expensive or impossible.

Impact of Interim Mistakes  They provide valuable learning.  They may be catastrophic.

SO
U
RCE: BAIN

&
 CO

M
PAN

Y

The Right Conditions for Agile

16

UNCLASSIFIED

UNCLASSIFIED

Harvard Business Review: Embracing Agile

Conditions Favorable Unfavorable

Market environment  Customer preferences and solution options
change frequently.

 Market conditions are stable and
predictable.

Customer Involvement  Close collaboration and rapid feedback are
feasible.

 Customers know better what they want as
the process progresses.

 Requirements are clear at the outset and
will remain stable.

 Customers are unavailable for constant
collaboration.

Innovation Type  Problems are complex, solutions are
unknown, and the scope isn’t clearly
defined.

 Product specifications may change.
 Creative breakthroughs and time to market

are important.
 Cross‐functional collaboration is vital.

 Similar work has been done before, and
innovators believe the solutions are clear.

 Detailed specifications and work plans can
be forecast with confidence and should be
adhered to.

 Problems can be solved sequentially in
functional silos.

Modularity of Work  Incremental developments have value, and
customers can use them.

 Work can be broken into parts and
conducted in rapid, iterative cycles.

 Late changes are manageable.

 Customers cannot start testing parts of the
product until everything is complete.

 Late changes are expensive or impossible.

Impact of Interim Mistakes  They provide valuable learning.  They may be catastrophic.

SO
U
RCE: BAIN

 &
 CO

M
PAN

Y

The Right Conditions for Agile

17

Digital Engine Control Systems,
Low Level Mission Critical Flight
Control Systems,
Legacy systems at end of lifecycle

Platform Mission software, EW,
Communications, Radar, Launch
systems

Ground control systems,
Command and Control

Enterprise Logistics
Support Systems

UNCLASSIFIED

UNCLASSIFIED

18

F-35 Design

Rudder
Activator

F-35A F-35B F-35C

Length (ft.) 50.5 50.5 50.8

Wingspan (ft.) 35 35 43

Weight (lb.) 26,500 30,697 30,618

These functions are examples that
impact flight safety, go through
rigorous acceptance testing and are
not expected to regularly change
throughout the life of the platform ‐
therefore not good options for
iterative development techniques.

Leading-Edge
Flap Actuators

UNCLASSIFIED

UNCLASSIFIED

19

F-35 Design

Mission
Computer

Radar
beamforming

Electronic Warfare
Processing

Sensor Fusion/
Integration

These SW functions will change often
with new sensors and algorithm
development. Possibly even mission to
mission and must be rapidly upgradable
to protect the viability of the platform.
Good choice for iterative development.

These SW functions will change
often with new sensors and
algorithm development. Possibly
even mission to mission and must
be rapidly upgradable to protect the
viability of the platform. Good
choice for iterative development.

UNCLASSIFIED

UNCLASSIFIED 20

Summary of the Case For/Against Agile

 Agile / Continuous Iterative Development makes sense “in theory”
for the software found in many of the weapons systems DoD builds

 Published empirical data is incomplete (therefore: not convincing)
 We have no direct confirmation / refutation for whether benefits will

be achieved by DoD contractors transitioning to Agile / Continuous
Iterative Development for weapons systems.

 Widespread adoption of these approaches by industry suggests
benefits are being seen in that setting.

 No reported transitions back to “waterfall” development approaches.

Empirical data and strong industry movement to agile development across
all domains strongly motivates DoD to move to agile development.

UNCLASSIFIED

UNCLASSIFIED 21

Agile Expectations vs. Experiences

 Two meta-studies do survey literature that gives empirical
comparisons.

 Tore Dyba and Torgeir Dingsoyr. Empirical studies of agile software development: A
systematic review. Information and Software Technology 2008.

 David F Rico. What is the ROI of Agile vs Traditional Methods. 2009
https://davidfrico.com/rico08g.pdf

 Meta-survey of 36 empirical studies prior to 2005 [Dyba and Dingsoyr].
 Four studies give empirical data for productivity comparison of agile and traditional

(“waterfall”) development. Most focus on XP (“extreme programming”) form of agile.

Study Traditional Prod Agile Prod Productivity Gain

S7 3 LOC/hr 13.1 LOC/hr 337%

S10 3.8 LOC/hr 5.4 LOC/hr 42%

S14 300 LOC/month 440 LOC/month 46%

S32 157 LOC/engr 88 LOC/engr ‐44%

S7 involved 15 teams used 4 different approaches.
Greatest difference shown.

Note: Agile team delivered far more code, but the same
functionality as traditional.

S14 agile team had more experience with languages
and management
S32 is a study concerning student programmers.

UNCLASSIFIED

UNCLASSIFIED 22

Published Empirical Comparisons (2)

 Meta-survey of 29 studies that contained ROI data (of 300 articles
analyzed).* Rico 2009
 On average, studies of Agile Methods reported

 29% lower cost
 91% better schedule
 50% better quality
 400% better satisfaction

*Rico 2008

UNCLASSIFIED

UNCLASSIFIED

23

FINDINGS
Commercial, DoD and its partners: Case Studies

UNCLASSIFIED

UNCLASSIFIED

trunk

latest

production

defunct

Sunday 6 PM Tuesday 4 PM
Wednesday Thursday Friday

Facebook Software Process Elements

Continuous
integration Gatekeeper Push Karma

24

UNCLASSIFIED

UNCLASSIFIED

Google Software Process

 More than 30K
developers in 40+ offices

 13K projects under active
development

 30K submissions per day
(1 every 3 seconds)

 20+ code changes per
min with 90+ bursts

 50% of code changes
monthly

 150M+ test cases per day
 Continuous integration for

all teams

25

Single Coding
Style

Single Coding
Style

TestsTests

Code review and
presubmit
testing

Code review and
presubmit
testing

Continuous
integration
Continuous
integration

CanariesCanaries

UNCLASSIFIED

UNCLASSIFIED 26

State of Play – Defense Prime Contractors*

*Note – discussions were held with top level company executives

 The majority of software developed by the major defense prime contractors follows a
traditional waterfall process

 All are familiar with iterative development, some in more depth than others. Most have
used it on selected small programs or portions of larger DoD programs in the past

 Some are quite eager to pursue iterative development of software as their primary
methodology, understand they are “15 years behind best commercial practice,” and would
welcome closer and more frequent participation with users in plant. But they claim they are
not able to do so because their DoD contracts are written requiring documentation,
progress reviews and incentives based on a waterfall model

 Others see iterative development as something useful for web apps but not appropriate for
most defense systems. They do not seem inclined to change their current approach to
developing software

 And still others are already trying to adopt portions of the iterative process into their
developments when it does not conflict with their contract language. And they claim to
have realized cost and schedule benefits in doing so. We even saw cases of using iterative
processes on large scale fixed price development programs whose requirements have been
unchanged for seven plus years (an example being the KC-46A Tanker)

UNCLASSIFIED

UNCLASSIFIED 27

Iterative Development
for National Security Mission: SpaceX

 Appears to be an “existence proof” that modern DevOps commercial
practices can be used effectively for rapidly changing systems that are
mission critical for national security – Air Force Space Launch

 Moving toward space launch every two weeks, with matching software
updates for mission critical flight and ground systems
 Only third party software they use is from Linux, everything else developed

organically
 Flight systems mission software changes 5-10% per mission
 Space launch certification (including FFRDC independent oversight) occurs

within two week window; maturity of process and scalability still uncertain

 Acquisition model: Government competes launch as a service. When SpaceX
wins award, they then have freedom to develop hardware and software
organically as they see fit – BUT must remain launch certified
 SpaceX has been using iterative software development for ~seven years
 Requirements changes come from both customer (e.g. specifics to each launch

mission) and from themselves (e.g. improvements to capability)

UNCLASSIFIED

UNCLASSIFIED 28

NSA has successfully moved to Agile
…with limitations

 NSA has successfully moved to an agile, iterative model for much of their software
development over the past five years

 Have built tools and in-house expertise that allows defense contractors to contribute and bring
mission experience

 But NSA essentially owns the software factory and buys software development by the hour from
the contractors

 Using modern commercial tools, combined with NSA approved encryption and security
measures, teams of multiple contractors at multiple locations can collaborate
simultaneously

 The model has been quite successful but does have some limitations
 Typically used for systems with stable hardware processing environments only
 NSA defines and manages the development process. While contractors apply specific local

expertise and write most of the code, the NSA tightly manages the process and metrics. This
requires the customer to have highly trained and capable program managers that are experts in
the Agile process

 Since NSA manages the process and buys software development by the hour, contractors do not
develop intellectual property and therefore do not have a strong business case to make big
investments to advance the relevant technologies. The government customers are sometimes
disappointed that industry isn't investing more in these areas

 NSA is intimately involved in the daily development of the software by the contractor

UNCLASSIFIED

UNCLASSIFIED 29

 Cost estimation at the start of software intensive DoD programs is
difficult; most independent cost estimates (the “ICE” – performed
by the CAPE or Service Cost Estimators) use outdated SLOC-based
cost models

 CAPE and Service cost estimators historic cost data appears
sparse – SLOC based assumptions are then compared to
historical “comparables” – with mixed results in matching
program actuals

 NRO Best Practice – Established contractual relationship with all
their major primes to provide internal cost data to the NRO – years
of data available to inform cost estimation of new programs

NRO Best Practice – Database of Historic Cost
Actuals for Software Development – Waterfall or Agile

UNCLASSIFIED

UNCLASSIFIED

30

FINDINGS
Acquisition Strategies and Contracting Approaches

UNCLASSIFIED

UNCLASSIFIED 31

 Classic Acquisition Metrics: Cost, Schedule, Performance
 Classic Phases of Acquisition: Development, Production, Sustainment – yet

modern software is in continuous development!
 Average ACAT I Development Program: Development Schedules for five years

(Milestone B to C), initial development actually takes ~seven years, follow on capability
every two years

 Colors of money and phases are not well-aligned with how software developed today
 Closest DoD analogy: P3I, smaller ACAT programs, life-extension, routine sustainment,

SOCOM MFP-11
 GAO’s annual report to Congress simply compares total cost and schedule (all

$ type) per program values to previous year, BUT will also compare changes
from original estimate years before:
 Usually Washington Post front page
 “Over the past year, the total acquisition cost for the 79 programs in the 2015

portfolio decreased by $2.5 billion and the average schedule delay in achieving initial
capability increased by 2.4 months. When assessed against first full estimates, total
costs have increased by $469 billion, over 48 percent, most of which occurred over 5
years ago. The average delay in delivering initial capabilities has increased to almost
30 months.” -GAO

The defense acquisition process, how money is requested, appropriated, and measured is misaligned
with modern software development.

Misalignment

UNCLASSIFIED

UNCLASSIFIED 32

 Ongoing major development programs – small scale (hybrid model): (e.g., KC-46A fixed price
development) It may be done at small scale as long as end-product remains unchanged (i.e., meets spec
of contract)

 Typically overall technical specifications derive from the requirements — a perfected statement of
the need expressed by the beneficial user; Precise specifications are typically enshrined in the
contract which is awarded at beginning of development (Milestone B) in traditional defense
acquisition programs

 Ongoing major development programs – large scale (e.g., F-35): In the course of incremental
developments, designer and/or customer may find original specs too ambitious or otherwise
undesirable due to technology change/warfighter need

 If incrementally build/test and expose users to the interim products, alternatives may suggest
themselves, and thus agile opportunities emerge

 However, to change a requirement in an ongoing program, the law requires there be a
“Configuration Steering Board,” a formal process called which may require highest level approval.
Lengthy staffing and approval process – the opposite of Agile.

 New Programs: Clean slate opportunity to do iterative development from the beginning
 An alternative acquisition approach could be compete software development as a service where

source selection is “Best Value” for mission success –Consider multiple vendors and consider it a
service

 Legacy Programs (development is complete):
 Even legacy programs can improve (e.g., Tomahawk)

Defense Acquisition could use Continuous
Iterative Development in many types of programs

UNCLASSIFIED

UNCLASSIFIED 33

Example of Legacy Program
Moving to Iterative Development: Tomahawk

 Tomahawk currently executing a streamlined, hybrid-Agile
approach with good results
 The development approach for Tomahawk add-on is still waterfall

 Conducting two-week long sprints over a defined period of time
(i.e., the waterfall spiral time) with the goal of discovering defects
earlier (not shortening the time to completion)
 Benefits:

 Shorter sprints allow for periodic deliveries for early integration and
testing, as well as cyber scans

 This approach will be implemented in full in the next baseline
(TTWCS v5.6.1)

UNCLASSIFIED

UNCLASSIFIED

34

RECOMMENDATIONS

UNCLASSIFIED

UNCLASSIFIED
35

Recommendation 0: Software Factory

 Key evaluation criterion in source selection process should be the
efficacy of the offeror's software factory
 The USD(R&E) should task DDS, USAF Life Cycle Management

Center (LCMC), Software Engineering Institute, and NAVAIR to
establish a common list of source selector criteria for evaluating the
software factory for use throughout the Department (see next slide
for suggested draft criteria)

 Make demonstration of proof of software factory, judged based on
offeror meeting at least a pass-fail criteria, to be minimally
technically acceptable in the proposal

 Criteria should be reviewed and updated every five years
 DoD has limited agile development expertise. Focusing this

expertise during the source selection uses this limited talent in
the most efficient way

UNCLASSIFIED

UNCLASSIFIED

Software Factory Source Selection
Criteria Suggestions

Tr
ac
ea

bi
lit
y
(is
su
e
tr
ac
ki
ng

)

Infrastructure

Version Control

Continous
Integration

Testing and
Metrics

Ra
pi
d
De

pl
oy
m
en

t

Operations

Su
pp

or
ts

 Configuration management software (e.g., Puppet, Chef,
Ansible)

 Continuous Integration (build and test) Systems (e.g., Travis CI
for hosted service, Jenkins for open source application)

 Scripts and code used to release software (e.g., Python
scripts)

 Servers, network or other infrastructure that support release
tools

 Software and tools to support developer self-service
operations (NewRelic for application performance over time,
diagnostic tools, monitoring)

 External test frameworks (e.g., Jersey Test Framework,
Testplant/Eggplant)

 External operational monitoring and log mining tools (e.g.,
Splunk, Elasticsearch + Logstash + Kibana (ELK) Stack)

 Source code repositories (e.g., Github for hosted service,
GitLab for open source application)

 Issue tracking systems (e.g., JIRA, Trello, GitHub)
 Container driven tools (e.g., Docker, Elastic Container Service

(Amazon Web Services (AWS)), Kubernetes)
 Requirements management (e.g., Doors, Blueprint)
 Infrastructure and cloud providers (e.g., AWS, Rackspace,

Azure, RedHat OpenShift, Pivotal Cloud Foundry
 IDEs integrated DevOps process

36

UNCLASSIFIED

UNCLASSIFIED 37

Recommendation 1:
Continuous Iterative Development

The Department and its Defense Industrial Base partners need to adopt
continuous iterative development best practices (continuing through sustainment)
for software

 SAE, with PEO, PM, and Joint Staff/J8, should identify Minimum Viable Product (MVP)
approaches and delegate acquisition authority to PM (cascade) providing motivation to do
MVP and work with the users
 Deliver a series of viable products (starting with MVP) followed by successive “Next

Viable Products” (NVPs)
 Establish MVP and the equivalent of a product manager for each program in its formal

acquisition strategy – get warfighter to adopt IOC as MVP
 Engage Congress to change statutes to transition CSB’s to support rapid iterative

approach (FY2009 NDAA, Section 814)
 DAE/SAE or Milestone Decision Authority (PEO or PM) should require all programs entering

Milestone B to implement these iterative processes for ACAT I, II, and III programs. Goal is
not to be overly prescriptive; details should be tailored to each program.

 SAEs should identify best practices and decide how to best incorporate into regular
program reviews (e.g., DABs, IPRs, Service Review Boards, etc.)
 Waivers done only by exception

UNCLASSIFIED

UNCLASSIFIED 38

Recommendation 2:
Risk reduction and metrics for new programs

For all new programs, the following best practices should be implemented in formal program
acquisition strategies:
 MDA (DAE/SAE/PEO/PM) should allow multiple vendors to begin work. Downselect after at least one

vendor has proven they can do the work. As feasible, retain several vendors through development. Do so
as a risk reduction practice.

 MDA with CAPE, USD(R&E), Service Cost Estimators, etc. should modernize cost/schedule. Evolve from
pure SLOC approach to comps; adopt NRO approach of contracting with Defense Industrial Base for
work breakdown schedule data (staff, cost, productivity, etc.).

 MDA should require the PM to build a program-appropriate framework for status estimation, metrics
examples include*:

 Sprint burndown: Tracks the completion of work throughout the sprint
 Epic & release burndown: Tracks the progress of development over a larger body of work than a sprint
 Velocity: The average amount of work a team completes during a sprint.
 Control chart: Focus on the cycle time of individual issues–the total time from "in progress" to "done”
 Cumulative flow diagram: Shows whether the flow of work across the team is consistent, visually points out

shortages and bottlenecks
* Such metrics should also be used by the Department, GAO, and Congress. For more information on agile
contracting approaches and metrics – see Digital Services techFAR

 There may be short term costs in transitioning to iterative development (software factory, training)
however our expectation is over the longer term commercial practice has demonstrated that net costs
are reduced.

UNCLASSIFIED

UNCLASSIFIED 39

For ongoing development programs:

 USD(AT&L) should task PMs, with their PEOs, for current programs to plan
transition to a software factory and continuous iterative development.
 Defense Prime contractors transition execution to a hybrid model, within the

constraints of their current contract.
 Defense Prime contractors incorporate continuous iterative development into long

term sustainment plan

 USD(AT&L) should task SAEs to provide quarterly status update to USD(AT&L) on
transition plan for programs, per ACAT category

For legacy Programs (development is complete):
 USD(AT&L) should task PMs, with their PEOs, to do business case for whether to transition

program

Sharing Best Practices:
 USD(AT&L) should task PMs of programs that have transitioned successfully to brief

lessons learned across the Services

Recommendation 3: Current and legacy programs
in development, production, and sustainment

UNCLASSIFIED

UNCLASSIFIED 40

Recommendation 4: Workforce (part 1/2)

The government does not have modern software development expertise in its
program offices and broader functional acquisition workforce – this requires
Congressional engagement and significant investment immediately

 Service acquisition commands (USAF LCMC, NAVAIR, NAVSEA, Army Materiel
Command) need to develop competency — acquire/access a small cadre of
software system architects with deep understanding of iterative development
 Use this cadre early in acquisition process in formulating acquisition

strategy, developing source selection criteria, and in evaluation
 Goal is to ensure software development expertise is established as core to

the program and to ensure mission is done in smaller pieces with
functionality at each step

UNCLASSIFIED

UNCLASSIFIED 41

Recommendation 4: Workforce (part 2/2)

 Beyond development of coders and developers, there is a need for software-informed PMs,
sustainers and software acquisition specialists
 Service Acquisition Career Managers should develop a training curriculum to

create/train this cadre
 SAE and PEOs should ensure program managers of software-intensive programs are

knowledgeable about software and with software acquisition training
 USD(AT&L)/ASD(R&E) direct DAU to establish curricula addressing modern software

practices – leverage expertise from FFRDC community (e.g., CMU SEI)

 Defense Primes must build internal competencies in modern software methodologies
 CEOs should brief USD(AT&L) quarterly to demonstrate progress

 Working with the Congress, career functional Integrated Product Team (IPT) lead
immediately establish a special software acquisition workforce fund modeled after DAWDF
whose purpose is to hire and train a cadre of software acquisition experts across the
Services; Objective is 500+/year starting in FY18

 PMs create Agile IPT with associated training; Service Chiefs delegate role of Product
Manager to these IPTs

UNCLASSIFIED

UNCLASSIFIED 42

Recommendation 5: Software is Immortal:
Software Sustainment (part 1/2)

 RFPs should specify the basic elements of the software
framework supporting the software factory including code and
document repositories, test infrastructure (e.g., gtest), software
tools (e.g., fuzz testing, performance test harnesses), check-in
notes, code provenance, and reference and working documents
informing development, test and deployment.

 Availability, cost, compatibility and licensing restrictions of such
framework elements to the government and its contractors will be
a selection criteria for contract award.

 At RFP, proposers may designate pre-existing components not
developed under the proposal but used or delivered as part of the
project; however, limitations related to use or access to underlying
design information (including components designed using the
“software factory” approach) may also be a selection criteria.

UNCLASSIFIED

UNCLASSIFIED 43

Recommendation 5: Software is Immortal:
Software Sustainment (part 2/2)

 Except for such pre-existing components, all documentation, test files,
coding, API, design documents, results of fault, performance tests
conducted using the framework, tools developed during the development
as well as the software factory framework shall be (pick one)
 1. delivered to the government at each production milestone
 2. escrowed and delivered at such times specified by the government (e.g., end

of production, contract reward).

 Selection preference shall be granted based on the ability of the
government to reconstitute the software framework and rebuild binaries,
rerun test, procedures and tools against delivered software and
documentation.

 These requirements shall flow down to subcontractors and suppliers
subject to reasonable restrictions affecting use, duplication and
disclosure of material not originally created as part of the development
agreement.

UNCLASSIFIED

UNCLASSIFIED 44

Recommendation 6: IVV for Machine Learning

 Machine learning is an increasingly important component of a broad
range of defense systems (including autonomous systems) and will
further complicate the challenges of software acquisition. With machine
learning, code may write itself.

 The Department must focus and invest to build a better posture in this
critical technology.
 DARPA and the DoD Labs should establish research and experimentation

programs around the practical use of machine learning in defense systems
with Independent Verification & Validation (IVV) and cybersecurity being the
primary focus
 establish a machine learning/autonomy data repository and exchange along the

lines of the CERT to collect and share necessary data from and for the
deployment of machine learning/autonomy

 create and promulgate a methodology and best practices for the construction,
validation & deployment of machine learning systems including architectures
and test harnesses.

UNCLASSIFIED

UNCLASSIFIED

45

BACKUP

UNCLASSIFIED

UNCLASSIFIED

Software Factories — the Next Step

 Maintaining a well-equipped software factory demonstrably
benefits the efficient and effective design and production of
software.
 DoD should ensure that prospective offerors understand and take

advantage of those benefits, emphasized by contractor-contract
selection criteria

 Much of the benefit derives from a well-stocked software
repository.
 Developers normally have access to their local, often proprietary

code base, as well as open-source software
 DoD has available to it a considerable accrual of source repositories

(and could negotiate more aggressively for new acquisitions)
 DoD, then, could provision a “global” repository and provide

controlled access to that source-base to its contractors on a per-
contract basis

UNCLASSIFIED

UNCLASSIFIED

Requirements Preparation of
the Agile Development Battlefield

 Agile software development methodology may work better in
cases where we are unsure of exactly what we want/need
 This rigid certainty describes most DoD acquisition requirements

as espoused (by to the JROC, e.g.) …
 But, in actuality, not all requirements are so precisely known, and
 Nearly all requirements bend to the wind of cost, schedule and

technical reality
 Modern, desirable agile development methods would be better

served by some latitude in the original requirement. For example:
 A “trade-space” or “performance envelope” that describes several

requirements that are in tension with one another
 The respective/comparative “value propositions” of individual

requirements more granular than just indicating “KPP” (a one-bit
descriptor of value and unnecessarily rigid)

UNCLASSIFIED

UNCLASSIFIED 48

 RFP Development and Source Selection Criteria:
 Incorporate demonstrated modern software factory maturity as part

of minimum technical acceptability threshold - “ready for
development evaluation”; Becomes pass/fail of proposal

 Demonstrated software development acumen during risk reduction
phase prior to Milestone B

 Consider software development contracted as a service!

 Require initial operating capability (IOC) date and criteria to align
with agreed upon Minimally Viable Product (MVP) (however, note
F-35B experience)

 Align Configuration Steering Board tempo with each software
development sprint – handle at lowest organization level possible
between requirements and acquisition communities

Modern Software Development in New Programs
Key Event – RFP Release to Begin Development

UNCLASSIFIED

UNCLASSIFIED

Phase Defects Injected/Originated

Reqts Design CUT DIT/
SWIT

System
Intgn

System
FQT

Defects Found 57 343 1730 22 44 0

% Found In‐Phase 32% 83% 86% 82% 100%

Cumulative Defects Found In‐Phase 84%

Defects Contained Efficient/Manageable Defect Burndown

Examples of Ongoing Development Iterative
development: Space Fence Software Quality

UNCLASSIFIED

UNCLASSIFIED 50

Advantages of Iterative Development*

1. Because of frequent interaction with the user, the developers are more
likely to create what the user really needs

2. Because each iteration is a short fixed duration, the cost of an iteration is
predictable – the acquirer can then more readily understand the
approximate cost of each feature

3. Iterative development allows progress to be tracked in terms of actual
user/system functionality completed, instead of measuring technical
artifacts such as lines of code produced, or adherence to a predefined
plan, or delivery of documentation

4. It eliminates chronically false assumptions which can endanger a program
 That we can accurately predict how long it will take to develop the software
 That we know all the user's requirements up front
 That those requirements will not change during development

5. With iterative development there is very little chance of getting to the end
of the program and finding out in test that the system does not function as
intended, requiring significant rework or cancellation of the program

*Adapted from “The Business Value of Agile Development,” Microsoft

UNCLASSIFIED

UNCLASSIFIED 51

Agile Expectations vs. Experiences

 Technical literature contains anecdotal reports about specific “agile”
approaches but offers few rigorous empirical studies.
 No empirical study is widely cited or considered authoritative.
 No studies found for weapons systems (e.g., real-time control, high-end security

threat)
 What could be basis for comparison by empirical study:

 Direct: Quality of system (bugs or vulnerabilities), size of system (LOC),
productivity (LOC/hr), development effort (elapsed time, labor hours)

 Indirect: Number of companies transitioning to agile / continuous iterative
development. (e.g., North American and European Enterprise Software Services
Survey, Business Technographics Ed., 2005: “14% of companies are using agile
methods and 49% are aware and interested in adopting them”)

 Two meta-studies do survey literature that gives empirical comparisons.
 Tore Dyba and Torgeir Dingsoyr. Empirical studies of agile software

development: A systematic review. Information and Software Technology
2008.

 David F Rico. What is the ROI of Agile vs Traditional Methods.
https://davidfrico.com/rico08g.pdf

UNCLASSIFIED

UNCLASSIFIED 52

Published Empirical Comparisons (1)

 Meta-survey of 36 empirical studies prior to 2005 [Dyba and
Dingsoyr].
 Four studies give empirical data for productivity comparison of agile

and traditional (“waterfall”) development. Most focus on XP
(“extreme programming”) form of agile.

Study Traditional Prod Agile Prod Productivity Gain

S7 3 LOC/hr 13.1 LOC/hr 337%

S10 3.8 LOC/hr 5.4 LOC/hr 42%

S14 300 LOC/month 440 LOC/month 46%

S32 157 LOC/engr 88 LOC/engr ‐44%

 S7 involved 15 teams used 4 different approaches. Greatest difference
shown.
 Note: Agile team delivered far more code, but the same functionality as traditional.

 S14 agile team had more experience with languages and management
 S32 is a study concerning student programmers.

