Integration of Parametric Cost Estimation with System Architecture

... and How It Applies to SE Productivity Metrics

Mr. Barry Papke, No Magic Dr. Gan Wang, BAE Systems 19th PSM Users' Group Conference 11-13 August 2018 Arlington, VA

1

© 2018 BAE Systems and No Magic

Measuring Productivity: Terminology

A General **Production Model**:

$$Q = f(K, L)$$
where,

$$Q = \text{output}; K = \text{capital}; L = Labor$$

$$Input \begin{cases} Labor \\ (Effort) \\ Capital \\ (Material) \end{cases} \qquad Output Scope \\ (Product Size) \end{cases}$$

$$Output Scope \\ (Product Size) \qquad Output \\ Capital \\ (Material) \end{cases} \qquad Output Cope \\ (Product) \qquad Output Cope \\ (Product Size) \qquad Output Cope \\ (Pro$$

• **Productivity**, in general economic terms:

$$Productivity = \frac{Output \ Created}{Input \ Used}$$

• **Labor productivity** (LP) is typically measured as output per worker or *output per labor-hour*.

$$LP = \frac{\partial Q(K,L)}{\partial L}$$

No Magic

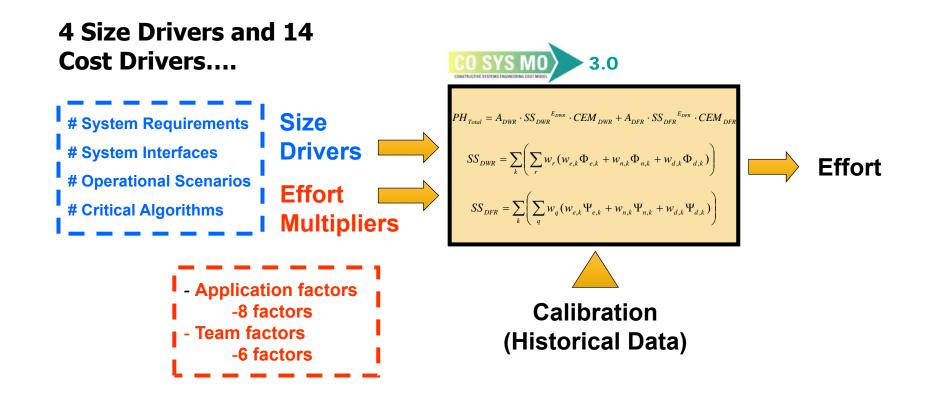
Systems Engineering Productivity

- We have established:
 - Wang, et al, "Measuring Systems Engineering Productivity," Proceedings of the 20th INCOSE International Symposium, Chicago, IL. July 2010
- **SE Productivity**: Productivity for systems engineering is defined as the amount of the system (measured in *eReq*) produced or realized per unit of labor (measured in eng. hour)

$$SE \ Productivity = \frac{System Size}{Total \ SE \ Hours}$$

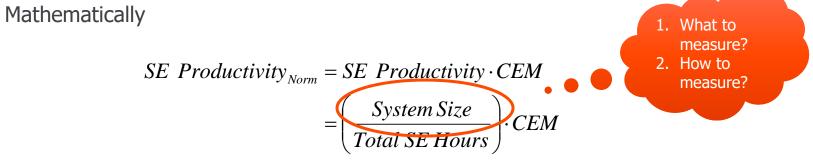
(eReqs/SE Hours)

• **SE Efficiency**: Efficiency for systems engineering is defined as the number work hours or effort (measured in eng. hours) required to produce a given unit of system (measured in *eReq*)


 $SE \ Efficiency = \frac{Total \ SE \ Hours}{System \ Size}$

(SE Hours/eReq)

SE Productivity Measure Is Based on COSYSMO CER



4

© 2018 BAE Systems and No Magic

Normalized Systems Engineering Productivity

• **Normalized SE Productivity**: amount of the system produced or realized per unit of labor, under the *nominal* system complexity and project environment

Where,

CEM = the *composite effort multiplier* defined from 14 cost drivers

$$CEM = \left(\prod_{i=1}^{8} AF_i\right)^{\frac{1}{8}} \cdot \left(\prod_{j=1}^{6} TF_j\right)^{\frac{1}{6}}$$
 (COSYSMO 3.0 CER)

"Normalize" different projects to the same level of complexity – or, take the complexity/environment "out of the equation"

•

Question 1/2: What to Measure?

- We have also established:
 - Wang, G., Roedler, G. J., Pena, M., & Valerdi, R. "A Generalized Systems Engineering Reuse Framework and Its Cost Estimating Relationship," *Proceedings of the 24th INCOSE International Symposium*, 274-297. 2014
 - Wang, G., "The Generalized Reuse Framework Strategies and the Decision Process for Planned Reuse." *Proceedings of the 26th INCOSE International Symposium*, Volume 26, Issue 1, July 2016: 175-189. Wiley and Sons

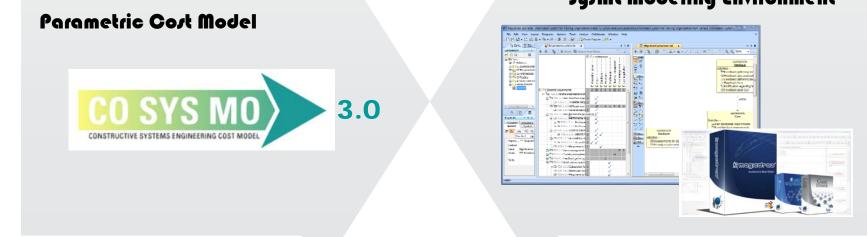
• COSYSMO 3.0:

- Size Drivers = {REQ, IF, ALG, SCN}
- Levels of Complexity
 - *"Easy"*
 - "Nominal"
 - "Difficult"

# of Interfaces	# of System Requirements	Difficult
# of Critical Algorithms Difficult # of Operational Easy # of Operational	# of Interfaces	Nominal
# of Operational	# of Critical Algorithms	Nominal
		Nominal

- Degrees of Reuse
 - "Generalized Reuse Framework"

	cvciopii	lent for K	euse (DFR)	•
o DFR	Conceptualized	Designed For	Constructed For	Validated For
	For Reuse	Reuse	Reuse	Reuse

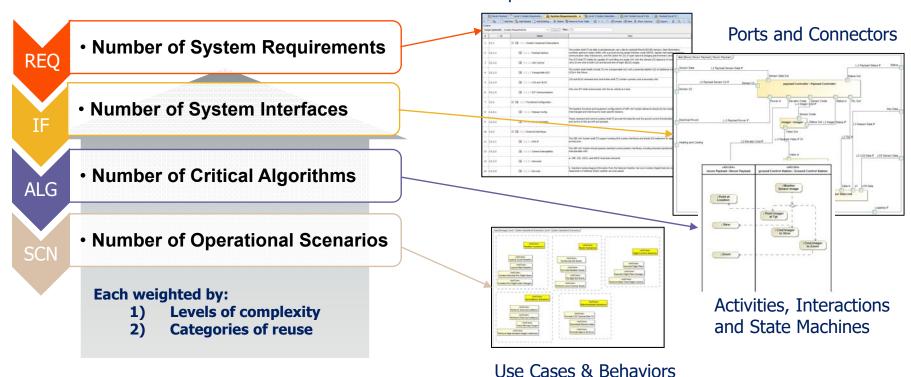

INSPIRED

WORK

Question 2/2: How to Measure?

- We have further established: the linkage between COSYSMO size drivers and SysML based architecture attributes
 - Papke, B., Wang, G., & Pavalkis, S., "Enabling Repeatable SE Cost Estimation with COSYSMO and MBSE," Proceedings of the 27th INCOSE International Symposium, 2017: 1699-1713, John Wiley and Sons
 - Papke, B., Wang, G., "Integration of Parametric Cost Estimation with System Architecture It's a dirty job but someone has to do it!" *Proceedings of the 28th INCOSE International Symposium*, 2018, John Wiley and Sons

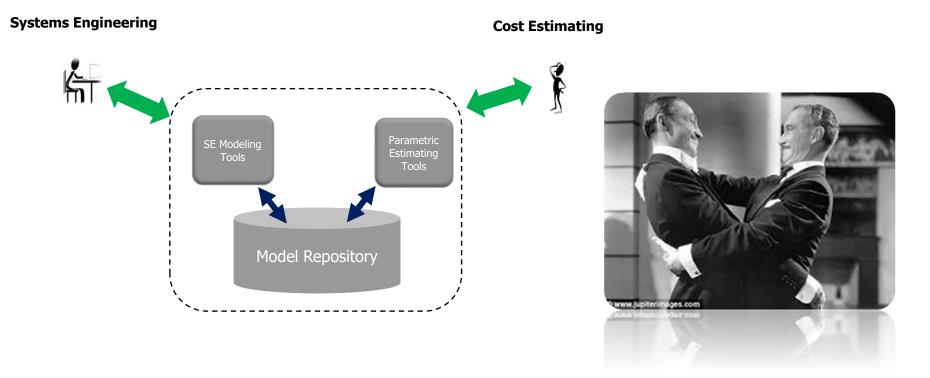
Sy/ML Modeling Environment


© 2018 BAE Systems and No Magic

Note: the principle applies to all modeling tools

What Has Have Established...

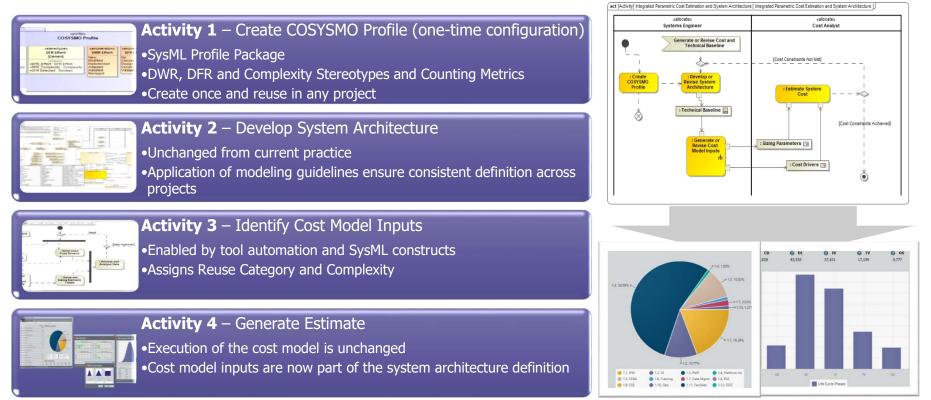
... System Models Provide Direct Estimating Size Driver Inputs


Requirements

Reference: "Enabling Repeatable SE Cost Estimation with COSYSMO and MBSE" Volume 27, Issue1, July 2017, Pages 1699-1713

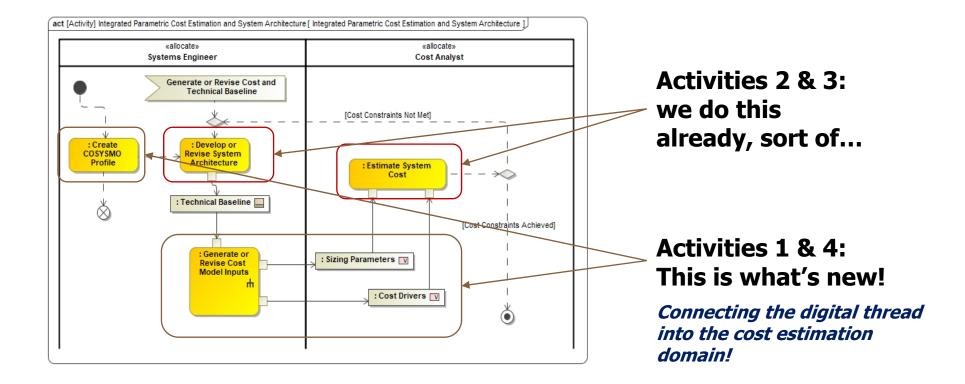
BAE SYSTEMS

Our Motivation: Integrated System Design and Cost Estimation

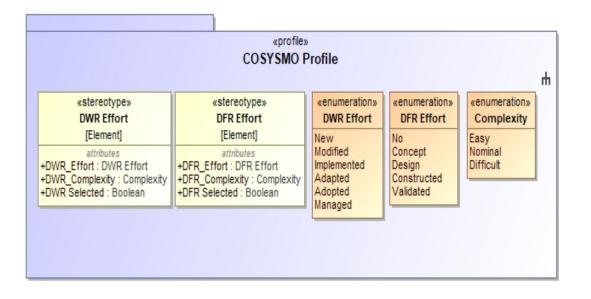

"Single Source of Truth" – Extending the digital thread into the cost domain!

A New SE CONOPS – Estimating as an Integral Part of System Architecture Modeling

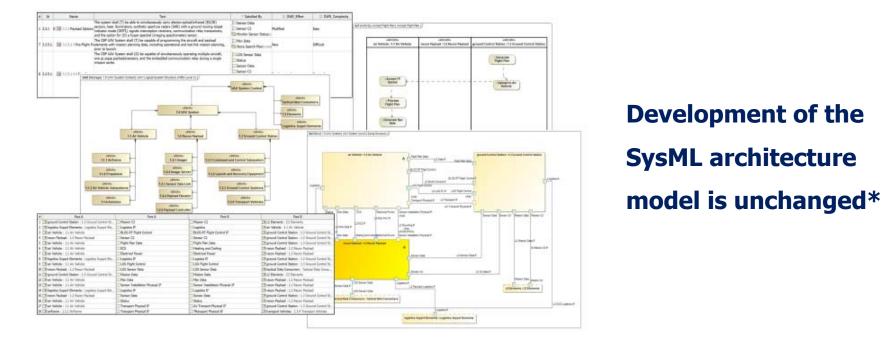
Four (4) Integrated Modeling Activities:


Reference: "Enabling Repeatable SE Cost Estimation with COSYSMO and MBSE" Volume 27, Issue1, July 2017, Pages 1699-1713

 $\ensuremath{\textcircled{}}$ 2018 BAE Systems and No Magic

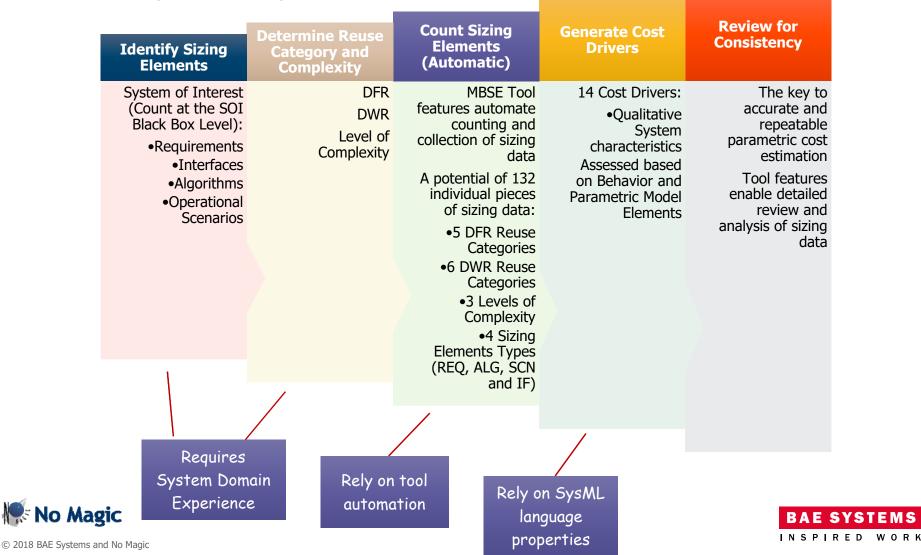

These Activities Are Performed as Part of an Augmented System Modeling Process

Activity 1: Create COSYSMO Profile (one-time event)



- SysML Profile package enables creation of stereotypes for
 - Reuse categories: DWR
 and DFR
 - Level of complexity: easy, nominal, difficult
- Once created, it can be reused in any new model

Activity 2: Develop System Architecture


* Projects must adopt consistent modeling standards to ensure repeatable sizing estimates that are consistent with calibration data.

Activity 3: Identify Cost Model Inputs

Iteratively with Step 2...

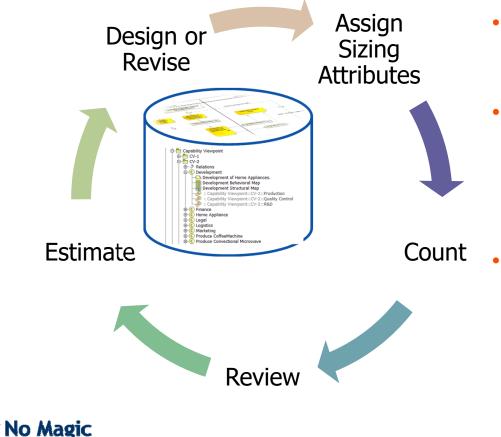
Review Data for Consistency

Advanced query features enable comprehensive analysis of sizing inputs.

Ele	ment Type: Activity		Scope (optiona	I): L2 System Functions		()×y	Filter: Q-
#	Name	Allocated To	O DWR_Effort	OWR_Complexity	♡ Satisfies	Rqmt DWR Effort	Rqmt DWR Complexity
1	Point at Location	1.2 Recon Payload	Adapted	Nominal	R 3.2.5.1.5.4 Simul	O Implemente	O Nominal
2	🔁 record streaming image	1.2 Recon Payload	Adopted	Easy	R 3.2.5.1.5.4 Simul	Implemente	O Nominal
3	Report Sensor Status	1.2 Recon Payload	Adapted	Nominal	R 3.2.5.1.5.4 Simul	O Implemente	O Nominal
4	B Store Search Plan	1.2 Recon Payload	Adapted	Difficult	R 3.2.5.1.4 Pre-Flig	O New	O Difficult
5	🔁 Monitor Sensor Status	1.2 Recon Payload	Adapted	Nominal	R 3.2.1 Payload Op R 3.2.5.1.5.4 Simul		 Easy Nominal

Example:

• The requirement that drove a specific critical algorithm should have similar DWR/DFR and complexity values as the SysML Activity that satisfies it.


Cross-cutting views and other analysis features of the MBSE toolset enable detailed review and analysis of sizing & cost driving parameters

© 2018 BAE Systems and No Magic

Integrated Modeling-Estimating Environment Enables Rapid Design Iteration and Optimization

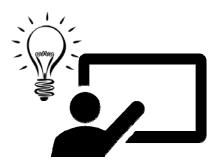
- Sizing Data is a property of the architecture and maintained with the system model
- Alternatives can be quickly evaluated to achieve optimized design that meets:
 - Functional and Performance Requirements

INSPIRED

WORK

16

- Cost Targets
- Cost impacts can now be integrated into the systems engineering decision process

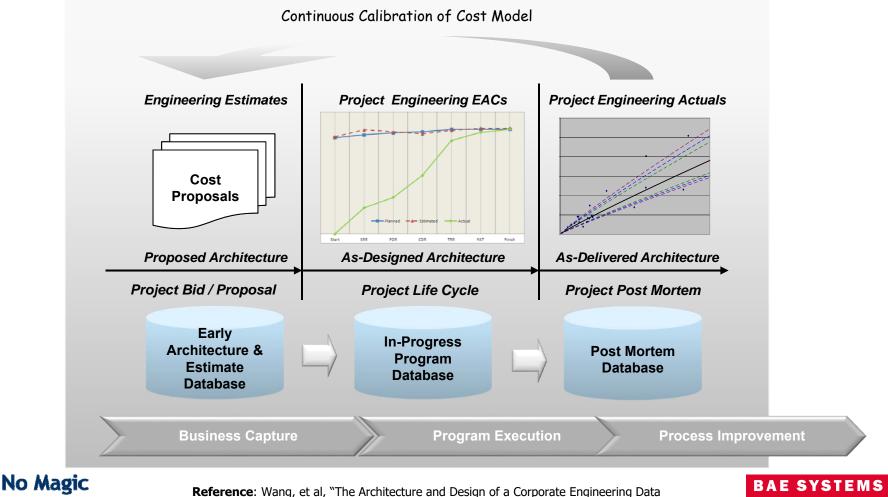


MBSE Allows Systems Engineers to Focus on the Important Things...

Tasks for MBSE Toolset

- Maintain Sizing Data as part of the System Architecture
- Provide efficient User Interface to apply Sizing Parameters
- Automate Counting
- Provide Cross Cutting Views for Analysis

- Tasks for the Systems Engineer
 - Design the System
 - Determine Sizing Elements
 - Determine Reuse Category and Complexity
 - Analyze Results



Managing SE Productivity Metrics for Enterprise

- Combined model library with productivity metrics database •
- Lifecycle metrics across product lines and organizations

© 2018 BAE Systems and No Magic

Repository," Proceedings of the 22nd INCOSE International Symposium, Rome, Italy, July 2012

The Prospect...

- As an attribute, SE productivity metric is embedded in system architecture models
 - Enabling systematic reuse and early design decisions
 - Enabling estimating capabilities: *analogy*, *parametric*
 - Connecting system (functions and performance) to economics

Conclusion with Perceived Benefits

- Integration of cost estimation with system modeling further extends the "digital thread"
 - Complete traceability from design to cost
 - **Repeatable** estimating with direct analysis/trade features
- Formalized development, integration, curation, and use of models for life cycle
 - Early system understanding
 - Reduced cycle time from design to cost, enabling to earlier decision making and faster time to market
- Enduring and authoritative "Single source of truth"
 - Reliable, trustworthy, and authoritative
 - Ultimately, better systems

Future Work

- Evaluation of tool-tool data exchange formats and protocols between SysML modelling and COSYSMO estimating tools
 - Potential MagicDraw add-on/extension
- Lifecycle management of cost estimation data within the MBSE repository as a corporate asset
- Conduct of one or more pilot case study projects

About the Authors

Barry Papke is the Director of Professional Services for No Magic Inc. He has thirty-two years of systems engineering and operations analysis experience in the aerospace and defense industry across the entire systems engineering lifecycle from concept development through integration, test and post-delivery support.

Gan Wang, Ph.D., is a Global Engineering Fellow at BAE Systems and the Chief Engineer for its Integrated Defense Solutions businesses. He has been actively engaged in systems engineering processes, cost estimating and analysis, modeling & simulation, multi-criteria decision making methods, and system-of-systems engineering methodologies.

Thank You

Dr. Gan Wang, BAE Systems Mr. Barry Papke, No Magic

© 2018 BAE Systems and No Magic

