

Objective Information for Decision Makers

Measuring Modularity and Openness *19 September 2019*

Paul Kohl – Lockheed Martin.

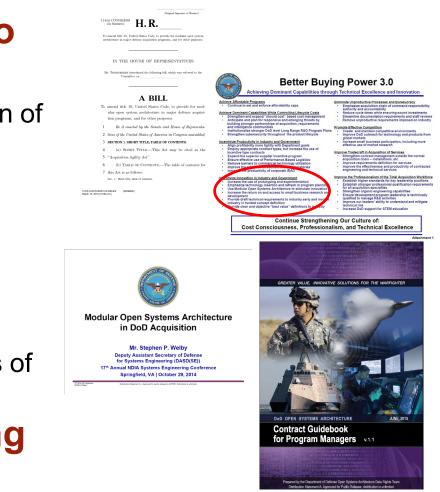
Measuring Modularity and Openness

BACKGROUND

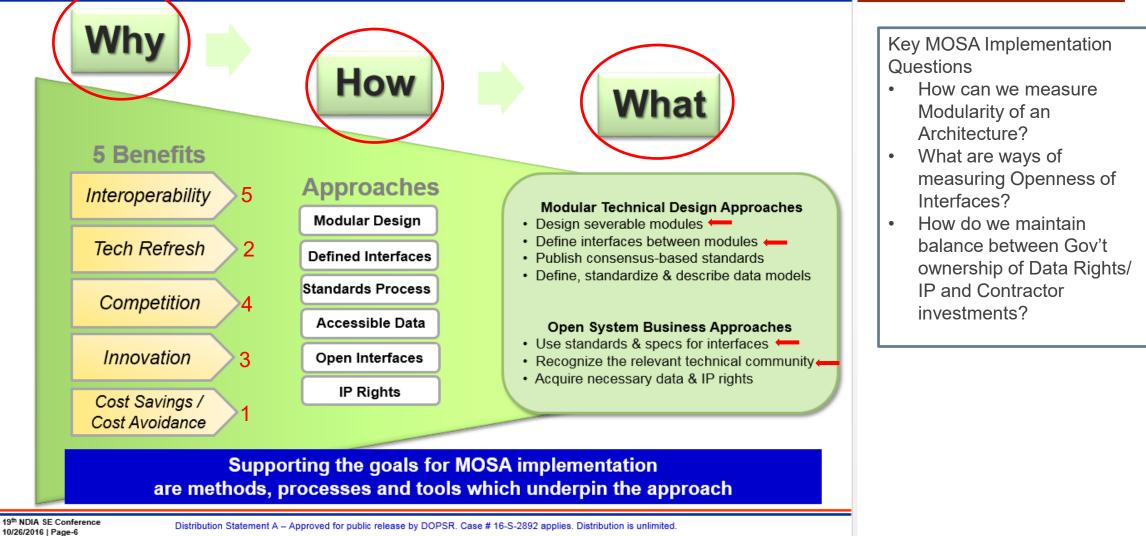
Modular Open Systems Approach (MOSA)

Objective: To design systems with highly cohesive, loosely coupled, and severable modules that can be competed separately and acquired from independent vendors

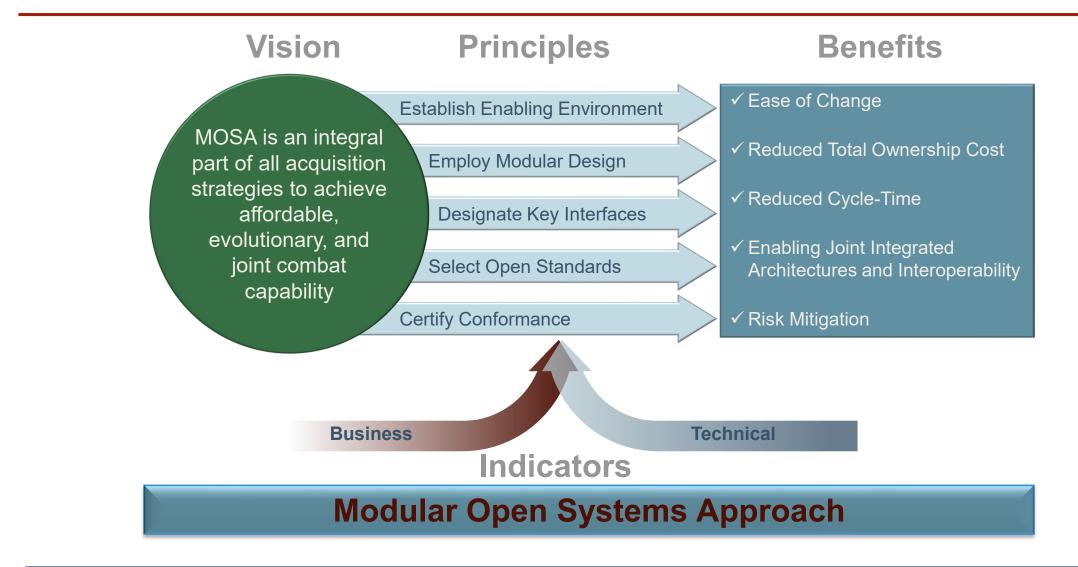
- Allows DoD to acquire warfighting capabilities, including systems, subsystems, software components, and services, with more flexibility and competition.
- MOSA implies the use of modular open systems architecture, a structure in which system interfaces share common, widely accepted standards, with which conformance can be verified.

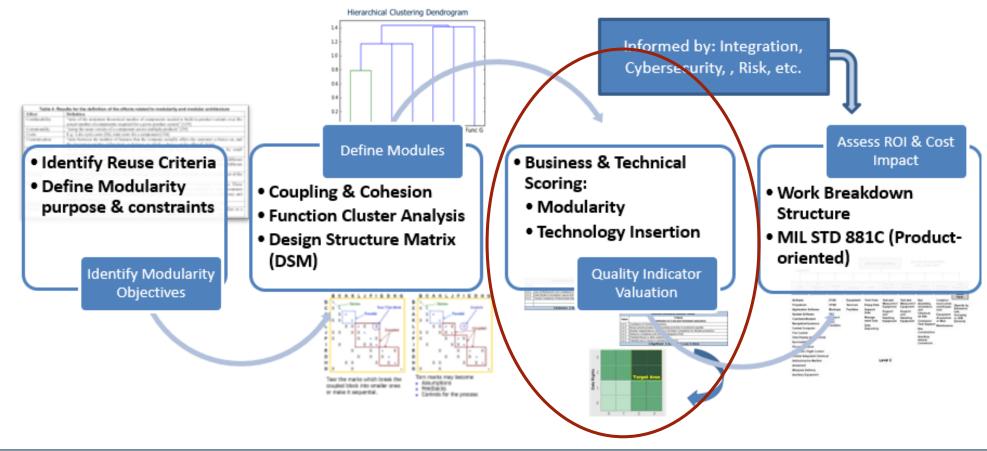

An integrated business and technical strategy to achieve competitive and affordable acquisition and sustainment over the system life cycle

Acquisition Reform driving Openness into DoD acquired systems


- National Defense Authorization Act required implementation of MOSA for major DoD acquisitions by 2019
- DoD is implementing on Major Defense Acquisition Programs (MDAP)
 - Driven by rapid evolution in technology and threats that require much faster cycle time for fielding and modifying warfighting capabilities
 - MOSA can accelerate and simplify incremental deliveries of new capabilities into systems.

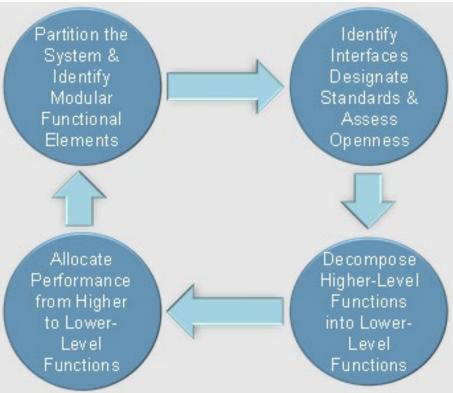
DoD has developed guidance for acquiring "open" systems


Modular Open Systems Approaches



Guidance to Gov't PMs (Capture & Execution)

Methodology Concept – Acquiring/ Developing a MOSA solution


Openness of Interfaces

- Business Aspects of Openness
- Intellectual Property (IP) and Data Rights
- Balancing the Government's desire to own the technical baseline with the Contractors' need to create IP and profits
- Technical Aspects of Openness
- Interfaces among System Elements
 - Standards-Based or
 - Well-Defined/ Fully Disclosed
- Openness Measures are critical

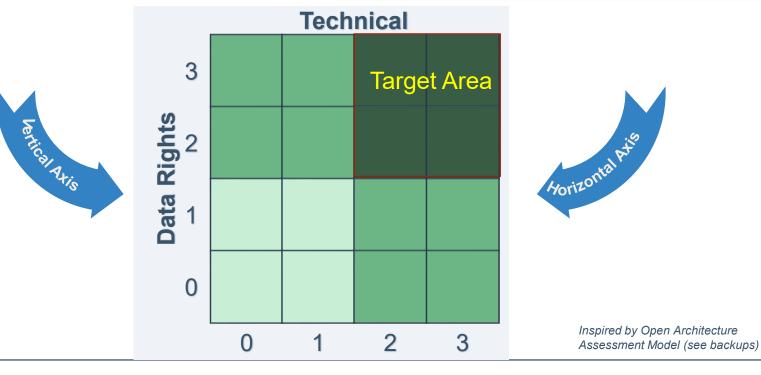
Key MOSA Concepts (2 of 2)

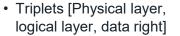
Architecting for Modularity

- Iterative & Recursive Architecture Design Process
- Results in an architecture partitioned into Modules
- Architecture partitioning factors
- Disciplined definition of functional partitions
- High Cohesion: Minimizing inter-partition dependencies
- Loose Coupling: Functionality can be easily broken away from the rest of the architecture to enable change
- Open Interfaces: Connect the Modules to each other
- Technology insertion opportunities: Enabling ease of change; focus on critical/ most quickly changing areas
- Measures of Cohesion and Coupling; how do we do this?

MEASURING OPENNESS

An Approach to Measuring Openness of each Architectural Interface


Business (Data Rights) Openness Values


Value	Criteria
3	Unlimited data right available with no IP claims
2	Government proposed data rights available
1	Proprietary interfaces with negotiated data rights

0 Proprietary interface with no data rights assessment

Technical Openness Values

Value	Criteria
3	Commercial or DoD Standard
2	Fully disclosed with well-defined and documents design (e.g. program interface ICD)
1	Proprietary interface with good documentation (e.g. MS APIs)
0	Undisclosed Proprietary interface

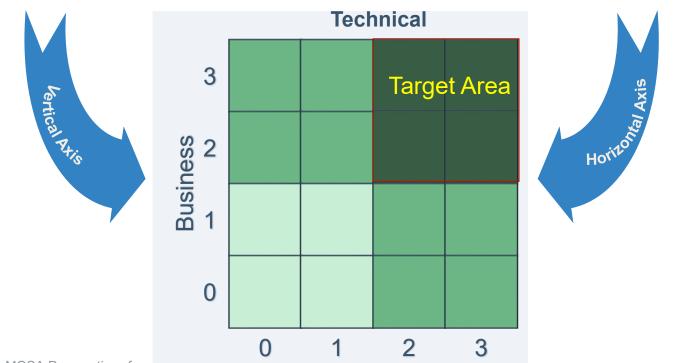
- Example MilStd-1553 with a program specific message set
- Would evaluate to [3,2,3] Average the first two values when placing on a two dimensional matrix

Measurement methodology measures only individual interface openness

- Still need to measure openness of the module (system element)
- Coupling the degree to which the elements inside a module belong together
- Cohesion the relationship of or degree of dependence of one module to another module
- A numerical value calculated from the # of interfaces and individual openness ratings
- Addresses both coupling and cohesion

MEASURING MODULARITY

- NDIA approach similar to openness measurements
- Technical dimension and business dimension

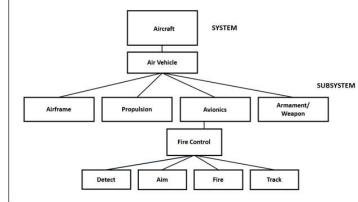

Technical Modularity Quality Indicator Values					
Value	Criteria				
3 to 0	Use of Loosely Coupled Interfaces between Modules				
3 to 0	Use of Interfaces of Low Complexity (Logical and Physical)				
3 to 0	Use of Data Model (Conceptual Logical and Physical) in Interface design and documentation				
3 to 0	Overall minimization of Complexity of Inter-module Integration				
3-Extensive 2Moderate 1Low 0None					

Business Modularity Indicator Values					
Value	Criteria (Contribution to Cost and Schedule Improvement)				
3 to 0	Facilitation of Technology Insertion				
3 to 0	Reuse amonst product lines providing economy in production quantity				
3 to 0	Modular independence sufficient to facilitate Competition for Module production				
3 to 0	Reduces Complexity and Systems Integration Risk				
3 to 0	Potential Reuse in other systems				
3 to 0	Potential use or reuse in commercial systems				
3-Significant 2Moderate 1Low 0None					

An Approach to Measuring Modularity

Business Modularity Indicator Values			Technical Modularity Quality Indicator Values				
Value	e Criteria (Contribution to Cost and Schedule reduction)		Malaa				
3 to 0	Facilitation of Technology Insertion		Value	Criteria			
	Reuse amonst product lines providing economy in production quantity		3 to 0	Use of Loosely Coupled Interfaces between Modules			
	Modular independence sufficient to facilitate Competition for Module production		3 to 0	Use of Interfaces of Low Complexity (Logical and Physical)			
3 to 0	Reduces Complexity and Systems Integration Risk		3 to 0	Use of Data Model (Conceptual Logical and Physical) in Interface design and documentation			
3 to 0	Potential Reuse in other systems		3 to 0	Overall minimization of Complexity of Inter-module Integration			
3 to 0	Potential use or reuse in commercial systems						
3-Significant 2Moderate 1Low 0None			3-Extensive 2Moderate 1Low 0None				

Source: Challenges to Implementing MOSA Perspectives from the NDTA Architecture Committee www.incose.org/symp2010


Use the factors in the tables in a standard K-T trade

- Factors are weighted by the Government Program office
 - Prior to contractor designs
- Allows Government to prioritize the factors for each program
- Alleviates issues related to driving multiple factors into a two dimensional space
- Additional ideas welcome

	Criteria	Weight	Score (0-3)	Weighted Score
	Technical 3-Extensive 2Moderate 1Low 0None			
•	Use of Loosely Coupled Interfaces between Modules			
	Use of Interfaces of Low Complexity (Logical and Physical)			
	Use of Data Model (Conceptual Logical and Physical) in Interface design and documentation			
	Overall minimization of Complexity of Inter-module Integration			
	Business 3-Significant 2Moderate 1Low 0None			
	Facilitation of Technology Insertion			
	Reuse amongst product lines providing economy in production quantity			
	Modular independence sufficient to facilitate Competition for Module production			
	Reduces Complexity and Systems Integration Risk			
	Potential Reuse in other systems			
	Potential use or reuse in commercial systems			
	Total	100		

- System Group/ Taxonomies Considerations (from the NDIA Architecture Committee)
- The legislation specifies two different MOSA requirements sets for two different levels of operational systems.
- Propose considering MOSA requirements at three tiers or Groups:
- Group 1 Mission Tier (Platform-to-Platform Interfaces)
- Group 2 Acquisition Tier (Major System-to-Major System Interfaces)
 - Focus on guidance found in Mil-STD 881 Work Breakdown Structures for Defense Materiel Items
- Group 3 Software (Computer Programs)
 - Unique requirements regarding definition of and control of interfaces, partitioning, and modularization;
 - Mil-STD-881 addresses software as CPCIs with the taxonomy to be defined by the designer
 - This is an area requiring further study

Source: Challenges to Implementing MOSA Perspectives from the NDIA Architecture Committee www.incose.org/symp2018

- Moshinsky, Edward, Challenges to Implementing MOSA for Major DoD Acquisition Programs, October 26, 2017
- Moshinsky, Edward, Challenges to Implementing MOSA Perspectives from the NDIA Architecture Committee, 28th Annual INCOSE International Symposium, July 7, 2018
- Moshinsky Edward, MOSA Key Points for Implementation from the NDIA Architecture Committee, October 24, 2018
- Open Systems Joint Task Force, Program Manager's Guide: A Modular Open Systems Approach (MOSA) to Acquisition, Version 2.0, September 2004
- Zimmerman, Philomena, Using the 5 Benefits of a Modular Open Systems Approach (MOSA) to Choose Enablers, 19th Annual NDIA Systems Engineering Conference, October 26, 2016

Paul Kohl is a FEAC Certified Enterprise Architect and System of Systems Information System Architect with Lockheed Martin Space. He has 30 years of system engineering experience in multiple domains and has been working with model based engineering techniques since 1998. He has held multiple engineering and architecture leadership positions on programs and proposals including chief engineer, chief architect, and engineering program manager and served as a model based engineering consultant to multiple program and customers.