
CLICK TO EDIT MASTER TITLE STYLE

Leveraging DevSecOps
to manage program
security performance

Cyber Security Goals

 Defend (Data, Networks, Systems)
 Deter (Cyber Crime, Terrorist Use of Internet)
 Develop (Capabilities)

Product
Backlog

Automated
Security tests
Run daily

Definition
Of

Done
(sprint)

Security
checks

Definition
Of

Done
(Release)

Security
checks

Shippable
Product

Continuous
Monitoring

Security
Stories

Business
Drivers

Enablers

Daily
standup

Plan
Design
Build
Test

DevSecOps enables Secure Delivery

Fuzzing

Pen
Test

Static
Analysis

Dynamic
Analysis

Threat
Modeling Defensive

CodingSecure
Design
Principles

Self
Service
Security
scanning

With security integrated

Presenter
Presentation Notes
Security is embedded throughout the Agile Lifecycle84% of Cyber attacks occur at Application LayerUnfortunately 80% of corporate security budgets focus securing the network layer.The Internet of Things has Increased our attack surface exponentiantially and the traditionalCastle model of Cyber Defense will not support our new worldAgile benefits SecurityShort Cycle TimesRapid feedbackAutomationWhat we add:Make security expert part of the development teamSecurity-related user storiesSecurity building blocks in the service catalogueDetailed security policies where neededSecurity classification to unify and automate decisionsDaily automated security testsContinuous monitoring

Waterfall vs Agile Lifecycle

Activities as opposed to phases that have smaller batch sizes
and
Are repeated.

Requirements /
Analysis Design Development Test Deploy OperatePhases

Activities

Presenter
Presentation Notes
The work to complete systems has not changed, but the tradecraft to build them has.Waterfall has large phases, Agile has activities with short feedback loops that provide empirical data to improve

Secure Solutions through Agile

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Presenter
Presentation Notes
Walk through the SDLC (Requirements Analysis)

Requirements / Analysis

People Process Tools

Beginning our requirements with security in mind enables us to
build trust early and prevent downstream friction.

• Cross functional team
• Embedded security

SME or security skills

• Include security in
product backlog

• Security Test driven
development

• Security RMF (NIST)

• Personas
• Mis-user stories
• Security user stories

Presenter
Presentation Notes
Build security into cross functional team – We want T-shaped people with security skills, but we may need to buildAdd Security stories to Product BacklogSecurity Test Driven Development – Build Security Tests and assertions prior to building code (OWASP has open source tools)Security RMF – Categorize, Select, Implement, Assess, Authorize, and MonitorDevelop Persona’s (Hackers, Disgruntled employees, Security Auditors)Develop Abuser Stories (black hat)Develop Security Stories (white hat)

Secure Requirements/Analysis

SM

PO

Dev

Dev
Test

Test

Dev

Security

Cross-functional scrum team

Personas

Normal Story
As a customer I want to
Store my information in a
profile
So that I do not have to put
information Into system every
time I shop.

Definition of Done

Enabler Story
As a team I want to have
current
security guidelines and
procedures so that I can build
security into the baseline.

Product Backlog

Ensure everyone on team
Has security skills

Presenter
Presentation Notes
Add Security Experts to the cross-functional scrum TeamEnsure Team has education and knowledge od Security Policy, Standards, guidelines, and proceduresMultiple Layers of Security for storiesMis-user Story – build capabilities to resist misuseSecurity Story – Stories to build security enabler capabilitiesNormal Stories – Use Definition of Done to ensure security is built into every storySecurity Features :10% Cryptography, firewalls, ACLs90% Overflow defense, input validation, output encodingDevelop Persona’s for bad guys (Debbie Disgruntled Employee, Harry Hacker)Build Security Stories, Hacker Stories, and security requirements into the product backlogThree Classes of Security Requirements:Every Sprint – Training , Threat ModelingOne time – Set up tracking, upgrade compilers, etc..Bucket – Fuzz Parsers, Response Plan, etc..

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Secure Solutions through DevSecOps

Design

People Process Tools

Security by design moves team focus to vulnerability prevention
from vulnerability detection

• Cross functional team
• Embedded security

SME or security skills

• Threat Modeling

• Security Design
Principles

• Open Design
• Security traceability

matrix
• Security Service

Catalogue

Presenter
Presentation Notes
Cross functional TeamThreat Modeling (Release /PI level and Sprint LevelBefore every Release (Modeling, Update Security Traceability Matrix, STRIDEBefore Every Sprint Ask (Have my assets changed? Have my controls changed? Has my attack surface changed? Have my threat agents changed?)Open DesignSecurity Traceability Matrix Catalog – (Content security, Policy security, identity / access management , datacenter)

Secure Design

SM

PO

Dev

Dev

Test

Test

Dev

Security

Threat Modeling

Security Matrix

Security Design
Principles

Product Backlog

Presenter
Presentation Notes
Add Security Subject Matter Experts to the cross-functional scrum Team while ensuring all team members are educated in securityProvide Team a Security Service Catalog with reusable security services and patternsPerform Threat Modeling at we engage in Design of ProductsTraceability Matrix – improves user stories and tasksSecurity Design PrinciplesVulnerabilities – Agile minimizes vulnerabilitiesHoneymoon effect – Agile moves at greater speed, its harder to hit a moving target“Security through Obscurity”Average vulnerability takes 739 days to close, Agile has rapid sprintsContinuous DeliveryFully documented, automated check-in; test; audit; and feedbackThreadfix – identify vulnerabilitiesAttack Surface – Agile reduces the attack surfaceBuild Security InSecure your supply chain using Statics analysis’Dynamic ScanningCompliance as code tool kit for developers9 Security Design PrinciplesLeast PrivilegeFail-Safe DefaultsEconomy of MechanismComplete MediationOpen DesignSeparation PrivilegeLeast Common MechanismPsychological AcceptabilityDefense in Depth

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Secure Solutions through DevSecOps

Development

People Process Tools

Moving from control gates to guardrails with automation and
workflows

• Cross functional team
• Embedded security

SME or security skills
• Hacking Skills

• Build on secure
libraries

• Infrastructure as code
• Compliance as code
• Defensive

programming
• Compartmentalization
• Feature Toggles
• Peer reviews
• Self-service security

scanning
• Security Spikes

• Security service
catalog

• Secure Infrastructure
• Continuous

Integration
• Static Analysis
• Audit defense toolkit
• Vulnerability metrics

Presenter
Presentation Notes
Cross-functional teamBuild on Secure Libraries / expand boundary of trustInfrastructure as code (Immutable Infrastructure)Compliance as Code – Audit defense toolkitDefensive Programming – Build capabilities that respond in predictable manner in unpredictable circumstancesCompartmentalization – minimize damage that can be done to a systemFeature Toggle – Logic to turn on and off codePeer Reviews Self-Service Security Scanning – Provide developers ability to scan vulnerabilities earlySecurity Spike – Agile Spikes to increase knowledge about security profile

Secure Development Pipeline

Product
Backlog

commit
Peer

Review

Static
Analysis

Compile
Build Automated

Unit Test

Digitally
Sign

Binary

Alert
High

change

Staging / Operations

Dev

Smoke Test
Targeted dynamic Scanning
Automated Security Attacks
Penetration Test
API Fuzzing

Test

Feature Toggles
Defensive Programming

Secure Infrastructure

Chaos engineering
Game day
Red / Blue

Presenter
Presentation Notes
Defensive Programming – Pre/post assertions & exception handling, look for buffer overflow, format string prevention, Format string, SQL injection Compliance as Code - Validate Compliance: automatically test and monitor your configurations for ongoing compliance validation through policy-driven testing for PCI DSS, SOX, HIPAA (Tools like UpGaurd)Feature Toggles – allow us to perform dark rollouts and reduce MTTRSecure Infrastructure – Build upon trusted environmentsContinuous Integration peer reviewStatic AnalysisDynamic Analysis – OWASP ZAP, ZAP Proxy (Jenkins plug-in)High Risk Commits Microservices – Any service called by many other services – flag high risk (High risk code Hashed, Security Unit Test Created, Security team reviewed)Build – Maven / Antrun automated suite of testsdigitally sign and store binariesIn the test environmentRun smoke tests including security smoke testsComplete Targeted Dynamic ScanningRun tools like Gauntltt for automated security attacksComplete manual penetration testingAPI Fuzzing

Secure Solutions through DevSecOps

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Testing

People Process Tools

Layered Security test levels reduces flaws in the systems we
deliver

• Cross functional team
• Embedded security

SME or security skills
• Hacking Skills
• Automated test SME

or skills

• Fuzz Testing
• Chaos Engineering
• Security Test Cases
• Risk based test
• Penetration Testing

• Automated Test
• Quality / Security

reports

Presenter
Presentation Notes
Cross functional TeamsFuzz Testing – malformed data injectionChaos Engineering – Systematic approach to inject chaos and security problems in system Security Test CasesRisk Based Testing – we can not test everything so use risk to prioritizePenetration Testing – Actively engage security measuresAutomation is critical to increase area we can testReporting and data analysis

Security Testing

Triage
Results

Risk
Based

Testing

Penetration
Testing

Security
Test

Cases

Fuzz
Testing

Static and
Dynamic
Analysis

Security
Test

Reports

Automated
Security
Attacks

Test

Presenter
Presentation Notes
Security Test Cases – Use personas to develop test cases for Hackers, disgruntled employeesDynamic Analysis – Verify input / output during runtimeFuzz Testing – Input large amounts of random data called Fuzz to find exceptions and loopholesTriage Results – We need to weed out false positives, so we don’t miss errors in the noiseRisk Based Testing – We can not test everything so we prioritize by riskPenetration Testing - replicates the steps a threat agent can take to exploit your vulnerabilities, demonstrates the impactSecurity Test Reports – Provides data and metrics regarding our vulnerabilitiesAutomated Security Attacks – Security MonkeyCapture test data from penetration testsGive to regression testersDuplicate their resultsTest every subsequent release

Secure Solutions through DevSecOps

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases
Accreditation

Deploy

People Process Tools

Secure deployments take the stress out of delivery and allows
use to deploy more often with smaller batches

• Cross functional team
• Embedded security

SME or security skills
• Hacking Skills
• Automated test SME

or skills
• Operation

(representatives)

• Secure the
Infrastructure

• Dark Roll-outs
• Canary Releases

• Immutable
Infrastructure

• Containers

Presenter
Presentation Notes
Bring Operations or representatives onto your teamSecure the Infrastructure – move from securing code to security in codeDark Roll-outs – we can test on target hardware for issues before turning on capability for usersCanary Releases – Use load balancer to minimize traffic against new capabilitiesImmutable Infrastructure – removes snowflakesContainers – Red Hat / Docker - # of ways to secure containers

Secure deployments
Staging /
Operations

Canary Release

Dark Rollouts

Central Package
Repository

PKG A
V 2.3

PKG B
V 2.1

PKG A
V 2.2

PKG A
V 2.1

PKG A
V 2.0

PKG B
V 2.0

Image N

Immutable
Infrastructure

New Feature

Secure Solutions through DevSecOps

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Operate and Monitor

People Process Tools

Embracing a culture of continuous improvement results in
secure systems

• Cross functional team
• Embedded security

SME or security skills
• Hacking Skills
• Automated test SME

or skills
• Operation

(representatives)

• Attack-Driven-
Defense

• Game days
• Red Team / Blue

Team
• Chaos Engineering
• Blameless post-

mortems

• Chaos Monkey /
Gorilla

• Logging / Monitoring
• Runtime defense
• Bug Bounty

Presenter
Presentation Notes
Cross functional team – get fast feedbackAttack Driven Defense – Iterate defenses based on real attack patterns, improve MTTDGame Days – Fire drill and provide feedback for the backlogRed Team / Blue Team – provide feedback for product backlogChaos Engineering – Injecting failureBlameless Post-mortems to get feedback Security MonkeyLogging - providing developers with concentrated guidance on building application logging mechanisms, especially related to security logging. Many systems enable network device, operating system, web server, mail server and database server logging, but often custom application event logging is missing, disabled or poorly configuredRuntime Defense – example twistlock (protects your containers against exploits, compromises, program mistakes and configuration errors)Bug Bounty

Secure Operations

• MTTA

• MTTD
• MTTR

Game
Day

Feedback

WANTED

100 000

Bug Bounty

Chaos Engineering Red/Blue Team

Presenter
Presentation Notes
Multiple Methods for continuous Feedback to further secure systems

Secure Solutions through DevSecOps

Requirements/
Analysis Design

Development

Deploy Test

Operate /
Monitor

Secure
Solutions

Activities not Phases

Automated Security Pipeline

Development

Number of FOSS
tools to prioritize

Manual
Assess

Orchestrate

Provision
Security
Services

Prioritize

Threat
Modeling

Static Analysis

Dynamic Analysis
Vulnerability
Repository

Test Automation

Intake Triage Test Deliver

Defect Tracker

Reporting
Metrics

Governance
Compliance
Reporting

Removal
False

Positives

Threat modeling
tools

Orchestrate build
pipeline

Provision Security
Multiple compliance

reporting choices

Multiple choice

Multiple COTS and
FOSS products to
perform static
analysis

Don’t forget
Dynamic analysis

Test your code
through
vulnerability
repository

Variety of FOSS
and COTS
automation tools

Quantitative
analysis is key

Presenter
Presentation Notes
Presentation will walk through all of the areas of the software lifecycleRequirements – Threat Modeling, Prioritization of activities, Design – Orchestration, provisioning Security ServicesDevelopment – Static Analysis, Dynamic AnalysisTest – Security Test Automation and Vulnerability repositoryDeploymentOperations

Future

Feed Back highway

Security
Team

Security
Community

Intelligence highway

Security Testing & Data Platform

DevOpsSec: Seamlessly integrate security into the implementation pipeline; ensuring
everyone takes responsibility while continuing to shorten feedback loops

Presenter
Presentation Notes
The future will integrate security within the delivery pipelineIncrease automationShorten Feedback loopsDevOpSecSecOpsRugged Ops

	Slide Number 1
	Cyber Security Goals
	Slide Number 3
	Slide Number 4
	Secure Solutions through Agile
	Requirements / Analysis
	Secure Requirements/Analysis
	Slide Number 8
	Design
	Secure Design
	Slide Number 11
	Development
	Secure Development Pipeline
	Secure Solutions through DevSecOps
	Testing
	Security Testing
	Secure Solutions through DevSecOps
	Deploy
	Secure deployments
	Secure Solutions through DevSecOps
	Operate and Monitor
	Secure Operations
	Secure Solutions through DevSecOps
	Automated Security Pipeline
	Future
	Slide Number 26

