# SW Sustainment: Nonlinear Regression Comparisons, Residual Fits, and Significance Testing

Christian Smart, Ph.D. Kim Roye Galorath Federal

## **Galorath Presenters**



**Senior Analyst** 

- Former Mathematical Statistician for the U.S. Census Bureau
- Provided cost support for Department of Defense hardware programs for over ten years



Dr. Christian Smart **Chief Scientist** 

- Former Director for Cost Analytics and Parametric Estimating for the U.S. Missile Defense Agency
- Oversaw development of the NASA/Air Force Cost Model (NAFCOM)
- Provides subject matter expertise to NASA Headquarters, DARPA, and Space **Development Agency**
- Recognized expert on parametrics and risk analysis

Agenda Purpose: Apply Advanced Nonlinear Regression Methods to Develop SW Sustainment CERs Four Methods Considered: LOLS,

MRLN, ZMPE, ZMAPE

11 CERs developed

**Tested Residual Fits** 

**Tested Significance** 

## METHOD OF LEAST SQUARES

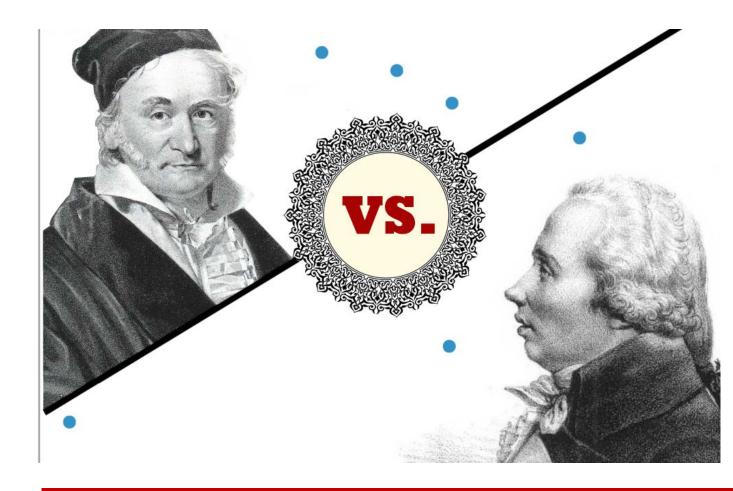
## History

The method of least squares was originally used to predict the orbits of heavenly bodies using observed data. Francis Galton applied the technique to find linear predictive relationships between various phenomena, such as relationships between the heights of fathers and sons.

Given the linear equation of the form Y = a + bX and a set of data  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ ,...,  $(X_n, Y_n)$ , the residuals are defined as  $\varepsilon_i = Y_i - (a + bX_i) = Actual - Estimated$ 

The estimated cost linear regression finds the "best fit" by finding the parameters, a and b, that minimize the sum of the squares of the residuals

$$\sum_{i=1}^{n} \varepsilon_{i} = \sum_{i=1}^{n} (Y_{i} - (a + bX_{i}))^{2} = \sum_{i=1}^{n} (Actual_{i} - Estimated_{i})^{2}$$





Least Squares method was first developed by mathematicians Legendre and Gauss in the early 19<sup>th</sup> century

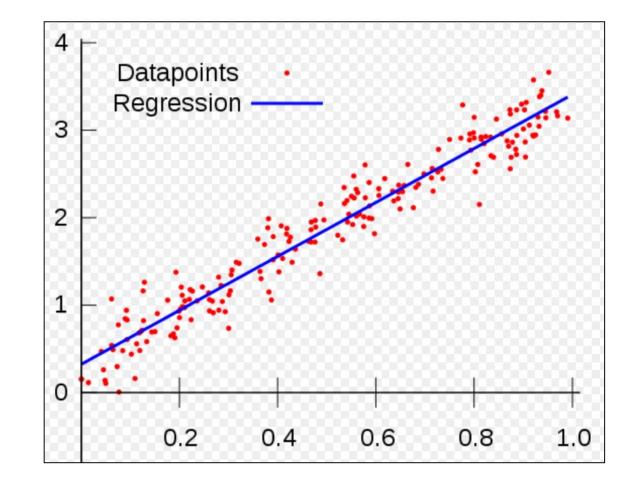


## REGRESSION ANALYSIS

## History

The method of least squares in commonly called regression because Francis Galton applied the technique to find linear predictive relationships between various phenomena, such as relationships between the heights of fathers and sons.

Galton found a positive correlation between these heights but found a tendency to return or "regress" toward the average height, hence the term "regression analysis."



Fun fact: Francis Galton and Charles Darwin were first cousins.



# LINEAR REGRESSION

- Widely used technique
- Given an equation of the form:

$$Y = a + bX$$

And a set of data:

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$$

The residuals are defined as:

## $\varepsilon_i = Y_i - (a + bX_i) = Actual - Estimated$

 This is also referred to as the "error" term since it is the difference between the actual cost and the estimated cost linear regression finds the "best fit" by finding the parameters a and b that minimize the sum of the squares of the residuals

$$\sum_{i=1}^{n} \varepsilon_{i} = \sum_{i=1}^{n} (Y_{i} - (a + bX_{i}))^{2} = \sum_{i=1}^{n} (Actual_{i} - Estimated_{i})^{2}$$



# NONLINEAR REGRESSION

- In the spacecraft and defense industry it is more common to see nonlinear relationships between cost and cost drivers
- The power equation is ubiquitous

## $Y = aX^{b}$

- In this case Y typically represents cost in \$, but can also represent effort (hours, full-time equivalents)
- X typically represents weight or some other performance parameter
- The equation can also be modified to accommodate multiple cost drivers
- The value of the b parameter in the power equation is usually less than 1, indicating economies of scale in design and production
- Linear regression is simple the calculations can be done by hand, but nonlinear regression requires more sophisticated methods, often the use of a computer



# RESIDUALS

- The residuals of the power equation can either be additive or multiplicative
- Additive residuals have the form

$$Y = aX^b + \varepsilon$$

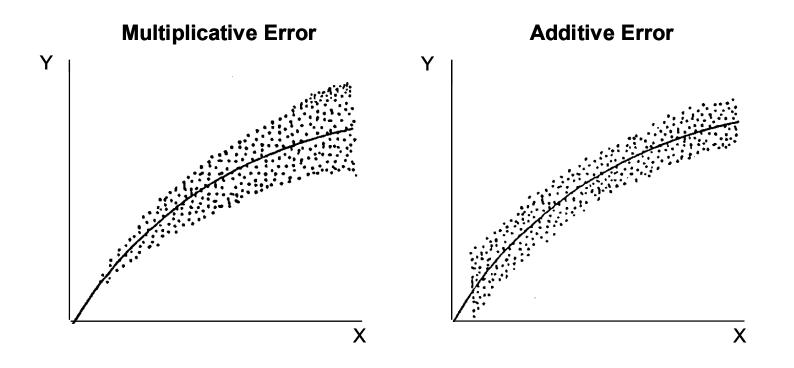
Multiplicative residuals have the form

$$Y = aX^b \varepsilon$$

- Multiplicative residuals are more appropriate for the spacecraft and defense industry in most applications because of wide variations in size, scope, and scale of the systems that are estimated
  - As a result we are primarily interested in the percentage difference between actual and estimated costs, not the absolute difference
- For example, if historical data ranges from \$50 million to \$1 billion, better to analyze percentage differences



# **RESIDUAL COMPARISON**



For data with wide ranges we are more interested in residuals as percentages (multiplicative) than as dollars (additive)



# **MULTIPLICATIVE RESIDUALS**

• For the Power Equation with Multiplicative Residuals, i.e.,

 $Y = aX^b\varepsilon$ 

 The Regression Estimates Vary Based on the Variation of the Residual

$$\varepsilon = \frac{Y}{aX^b}$$

- Also Common to Adjust This to Treat  $\varepsilon$  as a Percentage, i.e., Set  $Y = aX^b(1+\varepsilon)$ 

$$\varepsilon = \frac{aX^{b} - Y}{aX^{b}} = \frac{Estimate - Actual}{Estimate}$$

Actual Cost = Estimate +/- Percentage of Estimate



## RESIDUALS ARE RANDOM VARIABLES

### **VARIATION NOT DUE TO INDEPENDENT**

VARIABLES

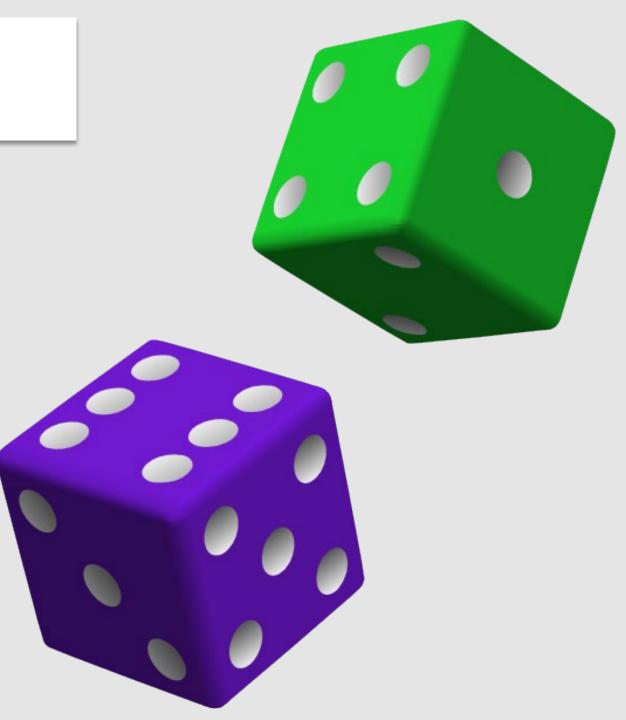
Residual variation is that which is due to the unexplained variation in your model

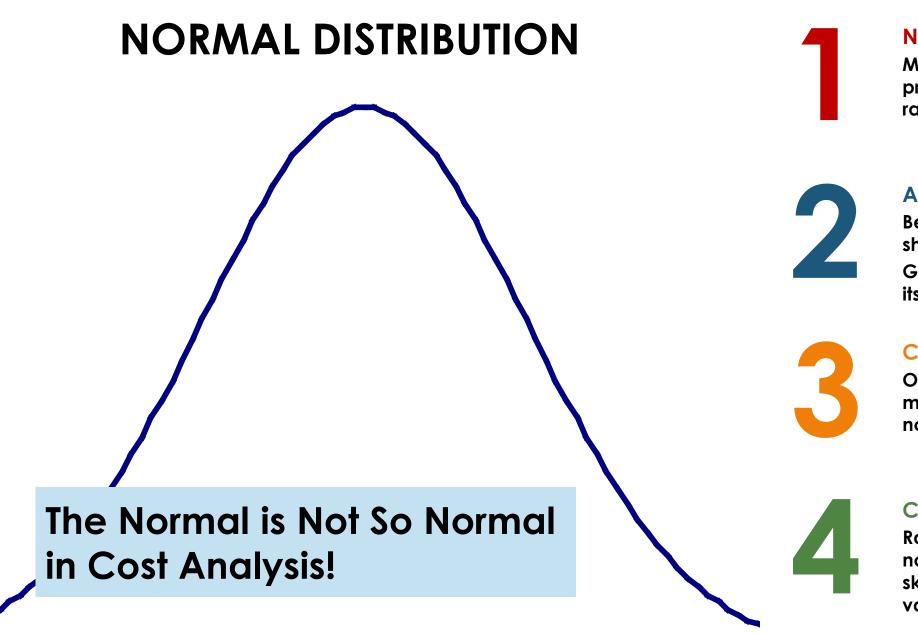
#### **LINEAR MODELS**

Assumption is that the variation is normally distributed

### **NONLINEAR MODELS**

Varation is typically lognormal; can also be modeled without a specific assumption of a probability distribution (non-parametric)





#### NORMAL DISTRIBUTION

Most commonly encountered probability distribution – many random phenomena follow this

**ALSO KNOWN AS** 

Bell Curve for its symmetric shape

Gaussian Distribution for one of its discoverers

**CENTRAL LIMIT THEOREM** 

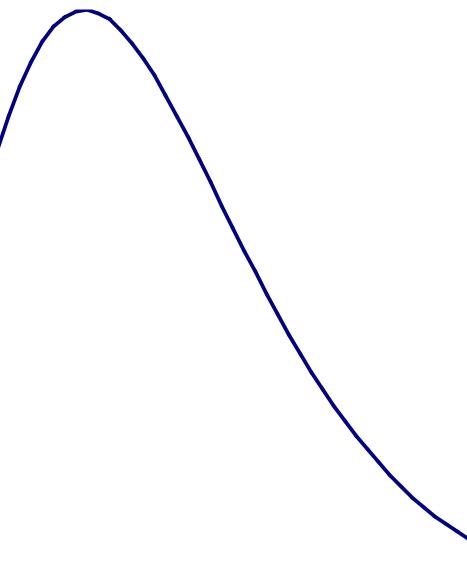
Often the case that the sum of many random phenomena is normally distributed

#### COST ANALYTICS

Rarely the case that cost is normally distributed, issues of skew and large amounts of variation



## LOGNORMAL DISTRIBUTION





LOGNORMAL DISTRIBUTION Skewed Distribution Bounded Below by Zero



**CONNECTION TO NORMAL** If x is Lognormally Distributed, y = ln(x) is Normally Distributed



THE DEVIL IS IN THE (DE)TAILS

Lognormal – Heavier Right Tail than the Normal Distribution



**COST ANALYTICS** 

Better Alternative for Cost Modeling than the Normal



# MAXIMUM LIKELIHOOD ESTIMATION (MLE)

- Maximum Likelihood Estimation is a widely used statistical technique that serves as a framework for the CER methods we discuss
- Let A<sub>1</sub>,..., A<sub>n</sub> represent the observed data and X<sub>1</sub>,...,X<sub>n</sub> represent random variables where A<sub>i</sub> results from observing the random variable X<sub>i</sub>
- The likelihood function, which represents the likelihood of obtaining the sample results, is

$$L(\theta) = \prod_{i=1}^{n} Pr(X_i = A_i \mid \theta)$$

- The Maximum Likelihood Estimate of q is the vector that maximizes the likelihood function
- Maximum Likelihood Estimation is an established popular statistical technique
  - Major advantage likelihood function is almost always available



# **APPLICATION OF MLE**

 Applying MLE to lognormal residuals yields Logtransformed Ordinary Least Squares (LOLS), which minimizes:

$$\sum_{i=1}^{n} \left( \ln y_i - \ln \beta_0 - \beta_1 \ln X_{i1} - \dots - \beta_p \ln X_{ip} \right)^2$$

- LOLS is easy to calculate
- Popular technique
- Log-scale trendline in Excel plots
- However it has issues:
  - Estimates the median vice the mean
  - Results in estimates that are biased low
  - This is an issue since estimates are typically added to other estimates in budget formulation



## LOLS ALTERNATIVES

## 1. ZMPE ("Zimpy")

#### **OVERCOMING BIAS**

Dr. Steve Book Developed the Zero-Bias Minimum Percent Error (ZMPE) Method as an Alternative to LOLS

### OBJECTIVE

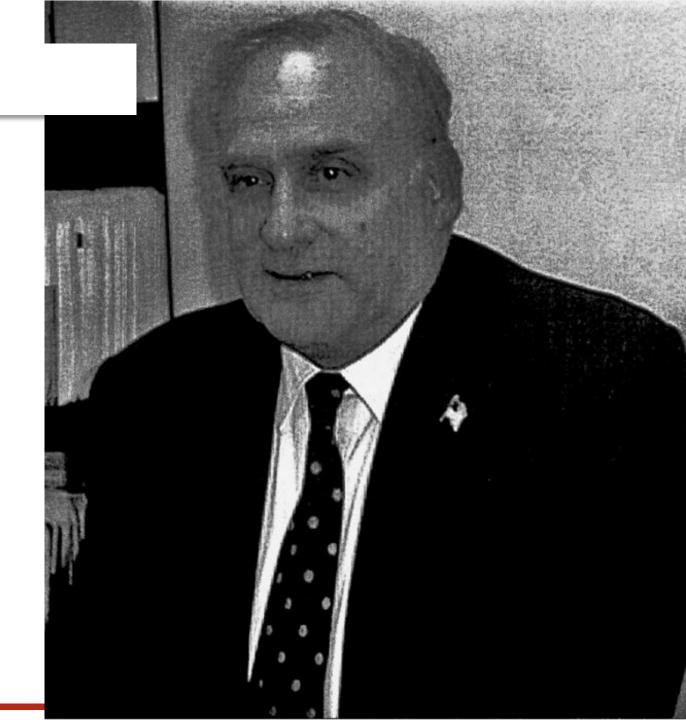
Minimize Squared Percent Error

$$\sum_{i=1}^{n} \left( \frac{y_i - f(x_i, \beta)}{f(x_i, \beta)} \right)$$

#### CONSTRAINT

Objective is minimized subject to a bias constraint:

$$\sum_{i=1}^{n} \left( \frac{y_i - f(x_i, \beta)}{f(x_i, \beta)} \right) = 0$$



## LOLS ALTERNATIVES

## 2. MRLN ("Merlin")

#### PARAMETRIC EVIDENCE

In one of the presenters' experience, the lognormal distribution fits residuals well for spacecraft and defense cost

#### **METHOD**

Apply MLE to Estimate the Mean of the Lognormal – Maximum likelihood Regression of Log Normal error (MRLN)

#### OBJECTIVE

Minimize

$$\frac{n}{2}ln\theta + \frac{1}{2\theta}\sum_{i=1}^{n} \left(lny_{i} - ln\beta_{0} - \sum_{j=1}^{p}\beta_{j}lnX_{ij} + \frac{\theta}{2}\right)^{2}$$

Where n = number of data points,  $\theta$  = the log-space sample variance



## LOLS ALTERNATIVES

## 3. ZMAPE

#### **HEAVY TAILS**

Many financial phenomena have heavy tails Mixed evidence of this for spacecraft If so, no reason to minimize variance – it could be infinite!

#### METHOD

Minimize Absolute Percent Error

$$\sum_{i=1}^{n} \left| \frac{y_i - f(x_i, \beta)}{f(x_i, \beta)} \right|$$

#### CONSTRAINT

Objective is minimized subject to a bias constraint:

$$\sum_{i=1}^{n} \left( \frac{y_i - f(x_i, \beta)}{f(x_i, \beta)} \right) = 0$$



## **GOODNESS OF FIT METRICS**

## **Changes in Metric Calculations**

#### **R**<sup>2</sup>

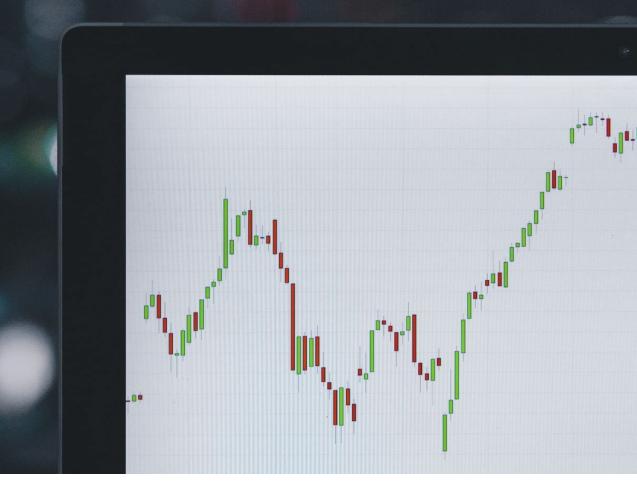
**Traditional linear regression**  $R^2$  has a cross-term that vanishes when the regression equation is linear; it does not vanish in the nonlinear case and can lead to negative  $R^2$  values when the equation is nonlinear. Instead we use "Pearson's  $R^2$ ," which is the square of the correlation coefficient between the actual and estimated costs

#### **Standard Error**

**Linear regression** calculates the standard deviation of the differences between the actual and estimated costs. We use "standard percent error" which is the standard deviation of the difference between the actual and estimated costs as a percentage of the estimated costs

#### Bias

**Bias is** always zero for a linear regression, the bias is negative for LOLS. We calculate bias as the average percentage error rather than the absolute error





# APPLICATION TO SW SUSTAINMENT DATA



# **OVERVIEW**

- Bias is a significant issue for all LOLS CERs ranged from -33% to -200%
- MRLN, ZMPE, and ZMAPE all eliminate bias
- MRLN, ZMPE, and ZMAPE also significantly reduce the standard percent errors
- Recommended CER is highlighted in yellow
- For MRLN and LOLS, checked residuals to see if they are lognormal
- For MRLN, if residuals did not fit a lognormal, calculated Zeropercent bias Minimum Absolute Percent Error as well (4/11 CERs)
- The log-space R^2s differ from the recommended Pearson's R^2 in all cases – in one case, it calls into question the significance of the CER (SW Baseline size 61% vs. 35%)
- Looking at actuals vs. estimates plot, there is a tendency across most CERs to overestimate smaller effort (< 1,000 hours) – recommend segmenting the data

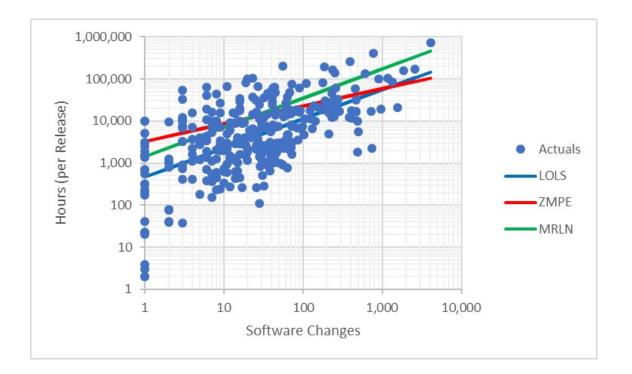


# VARIABLES

- Dependent variable is effort in hours per software release
- Data were trimmed lowest and highest 10% od data points in terms of hours/software change were trimmed
- Primary independent variable is software changes
- Other independent variables considered include:
  - Super Domain
  - Commodity
  - Total System Requirements
  - Total Requirements Implemented
  - External Interfaces Modified
  - SW Baseline Size
  - Backlog
  - Change Type
  - % Change Type



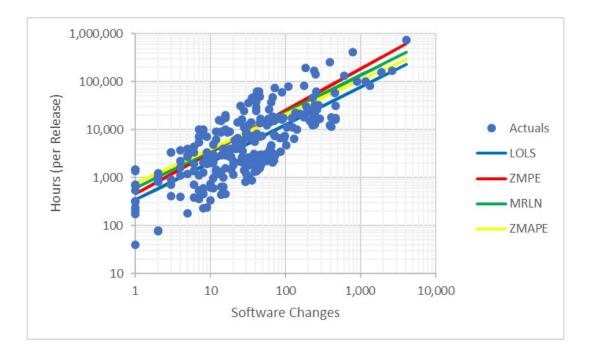
# **ALL DATA**



| Method | Int    | SC     | R^2           | SPE            | Bias     |
|--------|--------|--------|---------------|----------------|----------|
| LOLS   | 462.5  | 0.6929 | 44.27%        | 638.81%        | -209.66% |
| MRLN   | 1432.3 | 0.6929 | <b>44.27%</b> | <b>194.79%</b> | 0.00%    |
| ZMPE   | 3298   | 0.4177 | 33.66%        | 171.95%        | 0.00%    |



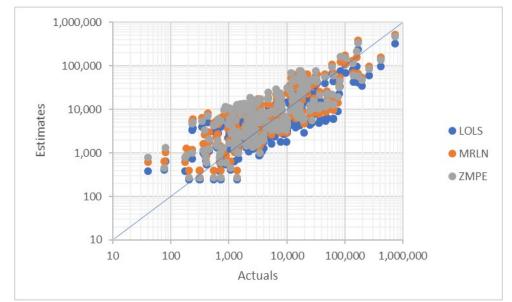
# **TRIMMED DATA**



| Method | Int   | SC     | R^2           | SPE            | Bias    |
|--------|-------|--------|---------------|----------------|---------|
| LOLS   | 340.7 | 0.7858 | 61.75%        | 215.63%        | -75.82% |
| MRLN   | 599   | 0.7858 | 61.75%        | 114.75%        | 0.00%   |
| ZMPE   | 453.7 | 0.8713 | <b>63.13%</b> | <b>113.46%</b> | 0.00%   |
| ZMAPE  | 753.1 | 0.7192 | 60.24%        | 117.53%        | 0.00%   |

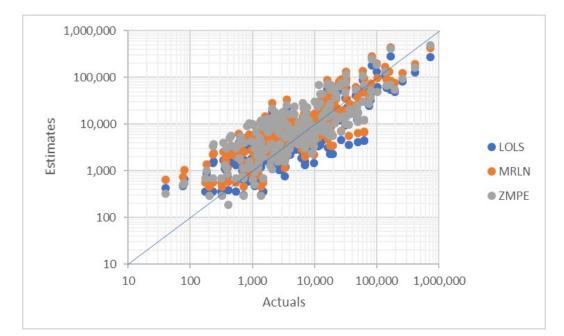


# TRIMMED DATA – SW Changes and Super Domain



| Method | AIS   | ENG   | RT            | SUP    | SC     | R^2    | SPE            | Bias    |
|--------|-------|-------|---------------|--------|--------|--------|----------------|---------|
| LOLS   | 242.1 | 386   | 735.7         | 698.7  | 0.7341 | 71.33% | 187.20%        | -61.51% |
| MRLN   | 391.1 | 623.5 | <b>1188.2</b> | 1128.4 | 0.7341 | 71.33% | <b>109.34%</b> | 0.00%   |
| ZMPE   | 268.2 | 798.3 | 994.2         | 731.2  | 0.741  | 66.64% | 101.91%        | 0.00%   |

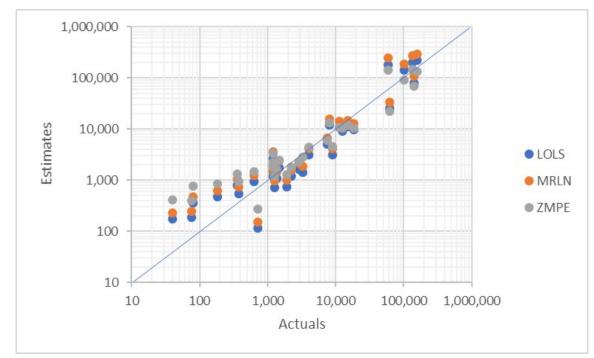
# TRIMMED DATA – SOFTWARE CHANGES AND COMMODITY TYPE



| Method | Aviation | Business | C4ISR | ChemBio | Fire   | Missiles | Simulation | Space  | Test   | Vehicles | SC     | R^2           | SPE     | Bias    |
|--------|----------|----------|-------|---------|--------|----------|------------|--------|--------|----------|--------|---------------|---------|---------|
| LOLS   | 1450.5   | 301.4    | 363.5 | 182.4   | 1530.9 | 1114.1   | 576.4      | 1005.3 | 1740.8 | 424.6    | 0.6645 | 60.83%        | 197.87% | -53.81% |
| MRLN   | 2229.1   | 463.6    | 559.2 | 280.7   | 2353.6 | 1717.9   | 886.4      | 1545.9 | 2682.2 | 653.0    | 0.6645 | <b>60.92%</b> | 123.58% | 0.00%   |
| ZMPE   | 1027.8   | 294.3    | 680.1 | 79.8    | 976.9  | 849.0    | 216.9      | 760.3  | 774.0  | 319.8    | 0.7671 | 63.30%        | 99.83%  | 0.00%   |

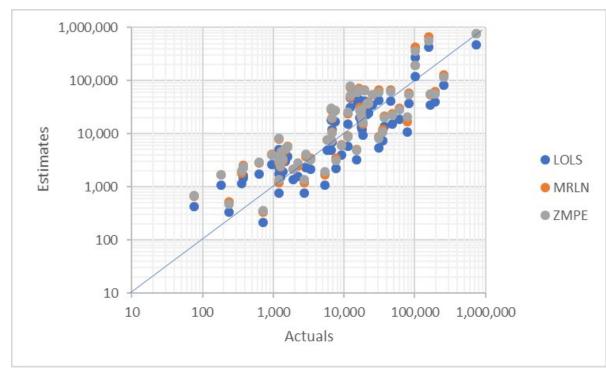


# TRIMMED DATA – SOFTWARE CHANGES AND TOTAL SYSTEM REQUIREMENTS



| Method | Int    | SC     | Tot Req | R^2    | SPE           | Bias    |
|--------|--------|--------|---------|--------|---------------|---------|
| LOLS   | 608.7  | 0.9807 | -0.2111 | 78.73% | 125.62%       | -33.55% |
| MRLN   | 813    | 0.9807 | -0.2111 | 78.73% | <b>90.29%</b> | 0.00%   |
| ZMPE   | 1466.0 | 0.7971 | -0.2120 | 77.50% | 71.21%        | 0.00%   |

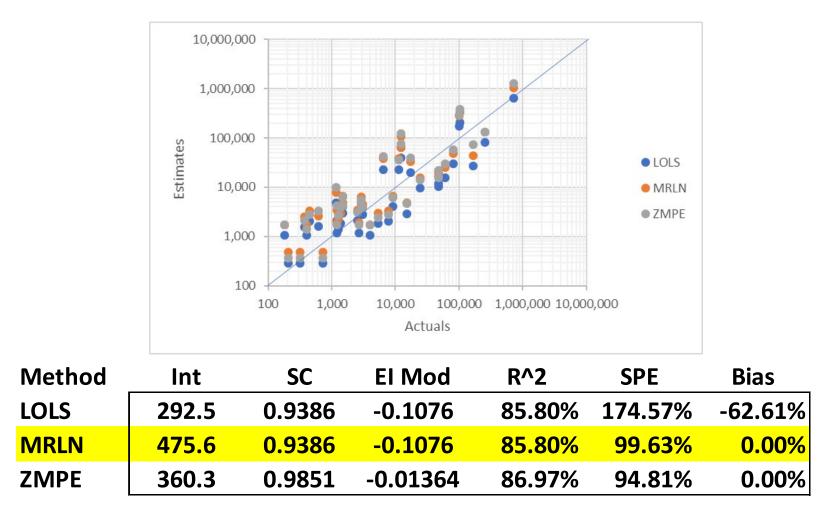
# TRIMMED DATA – SOFTWARE CHANGES AND TOTAL REQUIREMENTS IMPLEMENTED



| Method | Int   | SC     | Tot Req | R^2                 | SPE            | Bias    |
|--------|-------|--------|---------|---------------------|----------------|---------|
| LOLS   | 330.5 | 0.9671 | -0.1085 | 61.29%              | 173.11%        | -58.08% |
| MRLN   | 522.5 | 0.9671 | -0.1085 | <mark>61.29%</mark> | <b>102.84%</b> | 0.00%   |
| ZMPE   | 474.1 | 0.9496 | -0.0706 | <mark>68.81%</mark> | 101.66%        | 0.00%   |

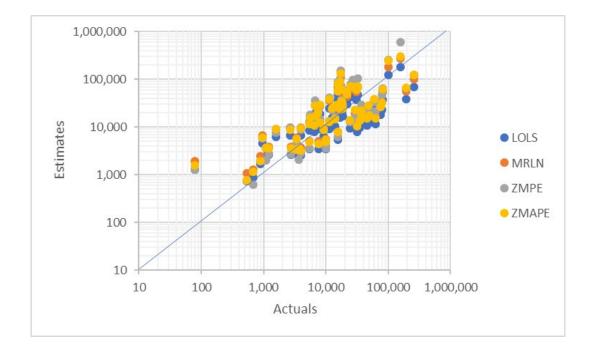


# TRIMMED DATA – SOFTWARE CHANGES AND EXTERNAL INTERFACE MODIFIED





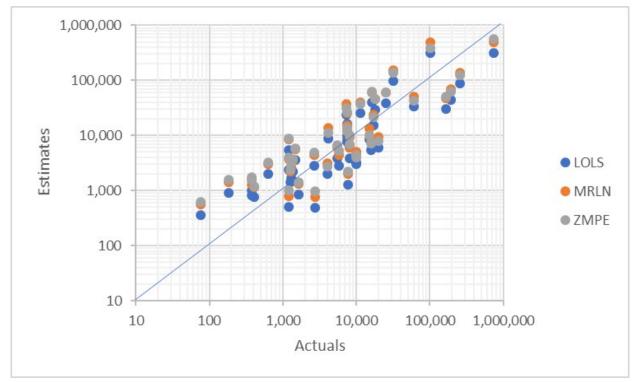
# TRIMMED DATA – SOFTWARE CHANGES AND SW BASELINE SIZE



| Method | Int    | SC     | SW BL Size | R^2           | SPE     | Bias    |
|--------|--------|--------|------------|---------------|---------|---------|
| LOLS   | 1219.5 | 0.7465 | -0.0368    | 34.87%        | 141.10% | -46.55% |
| MRLN   | 1787.1 | 0.7465 | -0.0368    | 34.87%        | 90.64%  | 0.00%   |
| ZMPE   | 400.2  | 0.8691 | 0.0460     | <b>28.92%</b> | 86.98%  | 0.00%   |
| ZMAPE  | 2660.4 | 0.8228 | -0.0894    | 35.77%        | 91.85%  | 0.00%   |



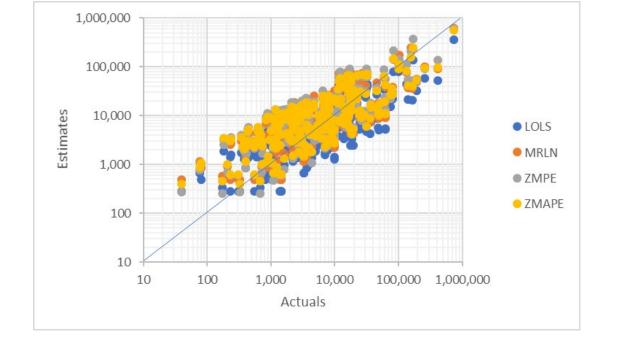
# TRIMMED DATA – SOFTWARE CHANGES AND BACKLOG



| Method | Int    | SC     | SW BL Size | R^2           | SPE     | Bias    |
|--------|--------|--------|------------|---------------|---------|---------|
| LOLS   | 756.6  | 1.0178 | -0.3631    | 56.93%        | 165.07% | -55.67% |
| MRLN   | 1177.7 | 1.0178 | -0.3631    | <b>56.92%</b> | 99.37%  | 0.00%   |
| ZMPE   | 909.9  | 0.9841 | -0.2633    | 71.23%        | 97.01%  | 0.00%   |

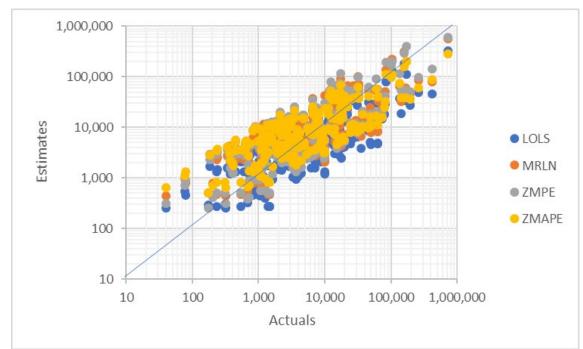


# TRIMMED DATA – SOFTWARE CHANGES AND CHANGE TYPE



| Method | С     | E      | Н     | Μ     | 0     | SC     | R^2           | SPE            | Bias    |
|--------|-------|--------|-------|-------|-------|--------|---------------|----------------|---------|
| LOLS   | 331.6 | 530.5  | 382.2 | 281.1 | 284.6 | 0.7864 | 70.70%        | 221.14%        | -73.97% |
| MRLN   | 573.8 | 923.9  | 666.0 | 489.5 | 493.7 | 0.7861 | 70.69%        | 119.60%        | 0.00%   |
| ZMPE   | 252.2 | 530.5  | 382.2 | 281.1 | 284.6 | 0.8187 | <b>68.57%</b> | 109.12%        | 0.00%   |
| ZMAPE  | 459.5 | 1020.0 | 525.6 | 630.7 | 398.0 | 0.7589 | 73.04%        | <b>112.34%</b> | 0.00%   |

# TRIMMED DATA – SOFTWARE CHANGES AND CHANGE TYPE %



| Method | Int   | E      | Μ      | С       | 0       | SC     | R^2                 | SPE            | Bias    |
|--------|-------|--------|--------|---------|---------|--------|---------------------|----------------|---------|
| LOLS   | 337.8 | 0.0945 | 0.0218 | 0.0298  | 0.0136  | 0.7678 | 64.22%              | 227.90%        | -73.88% |
| MRLN   | 587.4 | 0.0945 | 0.0218 | 0.0298  | 0.0136  | 0.7678 | 64.22%              | 123.82%        | 0.00%   |
| ZMPE   | 375.1 | 0.0391 | 0.0675 | -0.0308 | -0.0021 | 0.8187 | 65.30%              | <b>112.88%</b> | 0.00%   |
| ZMAPE  | 687.2 | 0.0271 | 0.0427 | -0.0239 | 0.0119  | 0.7020 | <mark>61.94%</mark> | <b>117.22%</b> | 0.00%   |



# Residual Fits for MRLN CERs



# **MRLN CERS**

- MRLN is optimal when the residuals are lognormally distribution
- Residuals are defined as:

 $Actual = Estimate * \varepsilon$ 

SO

$$\varepsilon = \frac{Actual}{Estimate}$$

# We test each CER fit with MRLN to examine its residuals



# **RESIDUAL STATISTICS**

| CER              | Mean | St. Dev | Skew | Kurtosis | Ν   |
|------------------|------|---------|------|----------|-----|
| All Data         | 1.0  | 1.9     | 4.3  | 26.4     | 329 |
| All - Trimmed    | 1.0  | 1.1     | 1.9  | 5.9      | 263 |
| Super Domain     | 1.0  | 1.1     | 2.3  | 9.4      | 263 |
| Commodity        | 1.0  | 1.2     | 3.9  | 22.9     | 263 |
| Total Reqmts     | 1.0  | 0.9     | 2.5  | 11.4     | 32  |
| Total Reqmts Imp | 1.0  | 1.0     | 1.6  | 4.8      | 65  |
| El Mod           | 1.0  | 1.0     | 1.2  | 3.4      | 41  |
| SW Baseline Size | 1.0  | 0.9     | 1.3  | 3.5      | 69  |
| Backlog          | 1.0  | 1.0     | 1.4  | 4.3      | 45  |
| Change Type      | 1.0  | 1.2     | 2.2  | 8.1      | 263 |
| Change Type %    | 1.0  | 1.2     | 2.5  | 10.3     | 263 |



### **DISTRIBUTIONS CONSIDERED**

Lognormal – key assumption we need to test

- Exponential cursory visual examination of residuals tends to look exponential
- Gamma flexible distribution that can resemble a lognormal
- Weibull flexible distribution with 3 parameters



## **GOODNESS-OF-FIT**

#### Anderson-Darling

- Goodness-of-fit test
- Emphasis is on detecting goodness-of-fit in the tails (weighted)
- Good at detecting departure from Gaussian (normal) distribution, and by extension, lognormality
- Comparing Distributions
  - Bayesian Information Criterion
  - Lognormal is Better Than All Others Considered for All CERs
    - Battle for second Exponential finished second in 6/11 fits



### **RESIDUAL RESULTS**

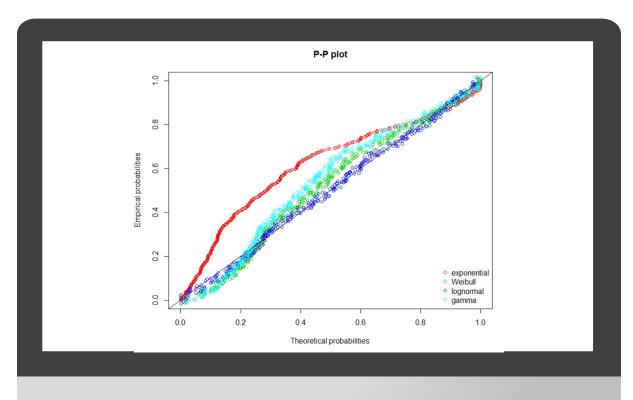
Cannot reject assumption of lognormality for 7/11 CERs

- Lognormal better fit than other distributions considered
- If lognormality rejected, recommend non-parametric CER ZMPE or ZMAPE

|                  | P-value   | Result        | <b>Bayesian Information Criterion Rank</b> |                          |   |         |  |
|------------------|-----------|---------------|--------------------------------------------|--------------------------|---|---------|--|
| CER              |           |               | Lognormal                                  | <b>Exponential Gamma</b> |   | Weibull |  |
| All Data         | 0.08      | Do Not Reject | 1                                          | 4                        | 3 | 2       |  |
| All - Trimmed    | 4.0x10^-4 | Reject        | 1                                          | 4                        | 3 | 2       |  |
| Super Domain     | 0.28      | Do Not Reject | 1                                          | 2                        | 3 | 4       |  |
| Commodity        | 0.36      | Do Not Reject | 1                                          | 4                        | 2 | 3       |  |
| Total Reqmts     | 0.79      | Do Not Reject | 1                                          | 4                        | 2 | 3       |  |
| Total Reqmts Imp | 0.12      | Do Not Reject | 1                                          | 2                        | 3 | 4       |  |
| El Mod           | 0.11      | Do Not Reject | 1                                          | 2                        | 3 | 4       |  |
| SW Baseline Size | 0.04      | Reject        | 1                                          | 3                        | 2 | 4       |  |
| Backlog          | 0.11      | Do Not Reject | 1                                          | 2                        | 3 | 4       |  |
| Change Type      | 1.8x10^-4 | Reject        | 1                                          | 2                        | 4 | 3       |  |
| Change Type %    | 1.2x10^-5 | Reject        | 1                                          | 2                        | 4 | 3       |  |



#### GRAPHICAL COMPARISON EXAMPLE – ALL DATA WHICH IS THE BEST?





# MRLN Significance Testing



### **MRLN SIGNIFICANCE - THEORY**

#### **MRLN is a Maximum Likelihood**

#### **Estimation (MLE) method**

Assumption is that residuals are lognormally distributed

Use Likelihood Ratio Test to compare the improvement in likelihood in going from the null hypothesis to the regression model Likelihood Function for Lognormal

$$\sum_{i=1}^{n} p(y_i|x_i;\beta_0,\beta_1) = \prod_{i=1}^{n} \frac{1}{y_i\sqrt{2\pi\theta}} e^{-\frac{(\ln y_i - \ln \beta_0 - \beta_1 \ln x_i)^2}{2\theta}}$$





### **MRLN SIGNIFICANCE - IMPLEMENTATION**

#### **Likelihood Ratio Test**

Calculate the likelihood of the regression model and the likelihood of the null model using the lognormal distributions

Then calculate the ratio of these two

**Chi-Square Test** 

-2log(Null Likelihood/Regression Likelihood) follows a Chi-square distribution with one degree of freedom

Use this to calculate a p-value

Implemented in Excel





### **MRLN SIGNIFICANCE - RESULTS**

#### **Regression Significance**

All MRLN regressions are statistically significant

Assumes lognormal residuals – not valid for four CERs

#### Variable Significance

Calculated variable significance incrementally (Regression with one variable vs. regression with two, etc.)

All variables/sets are significant **EXCEPT** Total Requirements Implemented





# ZMPE/ZMAPE Significance Testing



## INTRODUCTION

#### Non-parametric

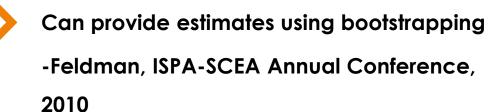
Significance testing for ZMPE/ZMAPE is harder than for MRLN as there is no underlying distribution assumed

#### Theory

If nothing is known about the distribution, there is no effective hypothesis testing

- Bahadur and Savage, Annals of Mathematical Statistics, 1956

#### **Practice**







### BOOTSTRAPPING

#### **Bootstrapping**

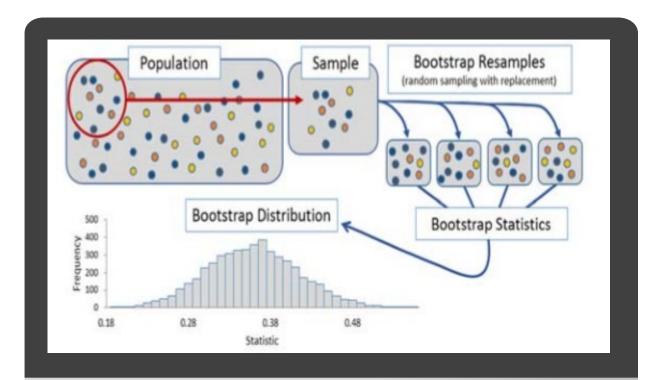
Involves resampling the residuals – akin to pulling yourself up by your bootstraps T-like Test

End result will be the calculation of a t-like statistic from the resampled residuals

T-test on the slope coefficient not being equal to zero (equivalent to F-test)

#### **R** Implementation

The method is implemented in the R statistical programming language





## **BOOTSTRAP DETAILS**

- Develop ZMPE/ZMAPE solution
- Resample with replacement N times from ZMPE/ZMAPE residuals
- For each of the N resamples resample M times
- Use the outer loop to calculate the standard deviation of the slope coefficient (s<sub>b</sub>)
- The inner loop is used to calculate a series of t-like values
- The critical value is  $b_1/s_b$
- Calculate the number of t-like values that are greater than the critical value, call this #
- The p-value is #/M
- If #/M <=0.05, reject the null hypothesis (regression is significant); otherwise, regression is not significant



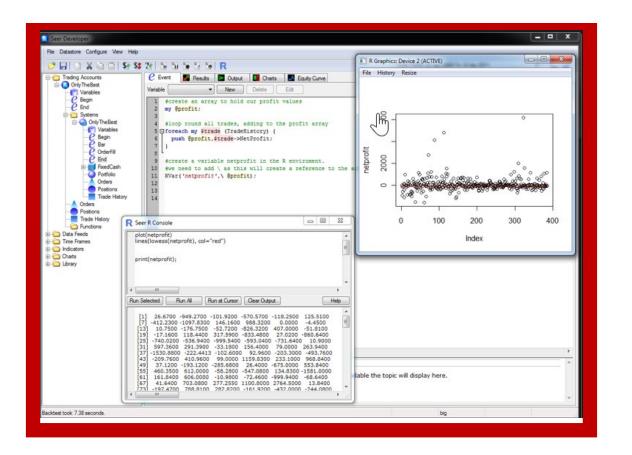
### SIGNIFICANCE TESTING

Illustrating the Process

| •             |                   | -     |                  | / | / *                     | (2.746 - 4) | .018) | -1.335 |
|---------------|-------------------|-------|------------------|---|-------------------------|-------------|-------|--------|
| <br>····b···· | $\hat{\beta}_0^*$ | σ*    | t <sub>b</sub> * |   | <i>i</i> <sub>5</sub> – | 0.952       | 2     | -1.555 |
| 1             | 4.257             | 1.802 | 0.133            |   |                         |             | -     |        |
| 2             | 2.990             | 1.459 | -0.795           |   |                         |             |       |        |
| 3             | 5.668             | 1.421 | 1/161            |   | ÷                       |             |       | :      |
| <br>4         | 3.645             | 1.724 | /-0.218          |   |                         |             |       |        |
| 5             | 2.746             | 0.952 | 1.335            |   |                         |             |       | •      |
| 6             | 3.136             | 1.109 | -0.795           |   |                         |             |       | •      |
| 7             | 4.036             | 1.102 | 0.016            | - | :                       |             | -     | •      |
| <br>8         | 5.699             | 1.736 | 0.969            | : |                         | :           | :     | :      |
| <br>9         | 4.340             | 1.514 | 0.213            |   |                         |             |       |        |
| 10            | 3.429             | 1.693 | -0.348           |   | :                       |             |       | •      |
| :             |                   |       |                  | ÷ |                         |             |       | •      |
| <br>500       | 2.047             | 1.524 | -1.293           |   |                         |             |       |        |



### IMPLEMENTATION IN R



#### **R** Programming Language

Freely available platform with a large number

of pre-built packages for doing statistical analysis

One of the leading tools for machine learning

Leveraged the rsoInp package to calculate ZMPE

Used built-in resampling capability in Base R

for bootstrap Distribution Fits

Also added capability to check that the residuals are lognormally distributed using the *fitdistrplus* package.



### REFERENCES

- Bahadur, R.R., and L.J. Savage, "The Nonexistence of Certain Statistical Procedures in Nonparametric Problems," The Annals of Mathematical Statistics, 1956
- Book, S.A., and N.Y. Lao, "Deriving Minimum-Percentage-Error CERs Under Zero-Bias Constraints," The Aerospace Corporation, El Segundo, CA, July 1996
- Feldman, D., "Testing for the Significance of Cost Drivers Using Bootstrap Sampling," presented at the 2010 ISPA-SCEA Annual Conference
- Smart, C., "Cutting the Gordian Knot: Maximum Likelihood Estimation for Regression of Log Normal Error," presented at the 2017 ICEAA Annual Conference

BACKUP

### **MLE – LOGNORMAL RESIDUALS**

- For  $Y_i = f(X_i, \beta) \varepsilon_i$ , where
  - $\beta$  = vector of coefficients of the CER
  - $Y_i$  = actual cost of the *i*<sup>th</sup> data point
  - $X_i$  = vector of cost drivers for the *i*<sup>th</sup> data point
  - $\mathcal{E}_i$  = residual of the *i*<sup>th</sup> data point
- Probability density function for lognormal distribution

$$p(y,\mu,\theta) = \frac{1}{y\sqrt{2\pi\theta}} e^{-\frac{(\ln y - \mu)^2}{2\theta}}$$

- Note that  $\mu$  is the log-space mean
- If we estimate  $\mu = ln(Y)$  then in the case of the power equation

$$Y = \boldsymbol{\beta}_0 X^{\boldsymbol{\beta}_1}$$

we are estimating the linear equation  $\mu = ln\beta_0 + \beta_1 ln(X)$ 

• Note that  $e^{\mu} = Y = \beta_0 X^{\beta_1}$  is the median in linear space